summaryrefslogtreecommitdiff
path: root/tools
diff options
context:
space:
mode:
Diffstat (limited to 'tools')
-rw-r--r--tools/CMakeLists.txt42
-rw-r--r--tools/alt_test.cpp51
-rw-r--r--tools/clock_gen_test.cpp22
-rw-r--r--tools/imu_calib.cpp222
-rw-r--r--tools/read_flash.c78
-rw-r--r--tools/read_flash.cpp538
-rw-r--r--tools/servo_test.cpp8
7 files changed, 610 insertions, 351 deletions
diff --git a/tools/CMakeLists.txt b/tools/CMakeLists.txt
index 8806fb0..a5a7ba6 100644
--- a/tools/CMakeLists.txt
+++ b/tools/CMakeLists.txt
@@ -1,34 +1,42 @@
if (COMPILE_TOOLS)
add_executable(read_flash
- read_flash.c
- ../src/spi_flash.c
+ read_flash.cpp
+ ${PROJECT_SOURCE_DIR}/src/ms5607.cpp
+ ${PROJECT_SOURCE_DIR}/src/adxl375.cpp
+ ${PROJECT_SOURCE_DIR}/src/iim42653.cpp
+ ${PROJECT_SOURCE_DIR}/src/mmc5983ma.cpp
+ ${PROJECT_SOURCE_DIR}/src/log_format.cpp
+ ${PROJECT_SOURCE_DIR}/src/heartbeat.cpp
+ ${PROJECT_SOURCE_DIR}/src/serial.cpp
)
add_executable(servo_test
servo_test.cpp
- ../src/pwm.cpp
+ ${PROJECT_SOURCE_DIR}/src/pwm.cpp
)
add_executable(alt_test
alt_test.cpp
- )
-
- add_executable(imu_calib
- imu_calib.cpp
+ ${PROJECT_SOURCE_DIR}/src/ms5607.cpp
+ ${PROJECT_SOURCE_DIR}/src/heartbeat.cpp
)
# pull in common dependencies
- target_link_libraries(read_flash pico_stdlib hardware_spi)
- target_include_directories(read_flash PUBLIC ../include)
+ target_link_libraries(read_flash pico_stdlib pico_logger pico_flash pico_rand pico_multicore pico_sync hardware_i2c hardware_adc hardware_timer FreeRTOS-Kernel FreeRTOS-Kernel-Heap4)
+ target_include_directories(read_flash PUBLIC ${PROJECT_SOURCE_DIR}/include)
+ target_compile_definitions(read_flash PRIVATE
+ USE_FREERTOS=1
+ DEBUG=1
+ PICO_STDIO_STACK_BUFFER_SIZE=64 # use a small printf on stack buffer
+ )
+ pico_set_binary_type(read_flash copy_to_ram)
target_link_libraries(servo_test pico_stdlib hardware_pwm hardware_i2c)
- target_include_directories(servo_test PUBLIC ../include)
+ target_include_directories(servo_test PUBLIC ${PROJECT_SOURCE_DIR}/include)
target_link_libraries(alt_test pico_stdlib hardware_i2c hardware_gpio)
-
- target_link_libraries(imu_calib pico_stdlib hardware_i2c hardware_gpio)
- target_include_directories(imu_calib PUBLIC ../include)
-
+ target_include_directories(alt_test PUBLIC ${PROJECT_SOURCE_DIR}/include)
+
pico_enable_stdio_usb(read_flash 1)
pico_enable_stdio_uart(read_flash 0)
@@ -37,14 +45,10 @@ if (COMPILE_TOOLS)
pico_enable_stdio_usb(alt_test 1)
pico_enable_stdio_uart(alt_test 0)
-
- pico_enable_stdio_usb(imu_calib 1)
- pico_enable_stdio_uart(imu_calib 0)
-
+
# create map/bin/hex file etc.
pico_add_extra_outputs(read_flash)
pico_add_extra_outputs(servo_test)
pico_add_extra_outputs(alt_test)
- pico_add_extra_outputs(imu_calib)
endif()
diff --git a/tools/alt_test.cpp b/tools/alt_test.cpp
index a5c8849..9e92cdd 100644
--- a/tools/alt_test.cpp
+++ b/tools/alt_test.cpp
@@ -1,50 +1,47 @@
#include <stdio.h>
#include "hardware/gpio.h"
-#include "boards/pico_w.h"
#include "hardware/i2c.h"
#include "pico/stdio.h"
#include "pico/time.h"
-#define ALT_ADDR 0x60
+#include "ms5607.hpp"
+#include "heartbeat.hpp"
+#include "rp2040_micro.h"
+
+#define DATA_RATE_HZ 200
#define MAX_SCL 400000
-#define DATA_RATE_HZ 15
-float altitude = 0.0f;
-float get_altitude();
+bool data_callback(repeating_timer_t *rt);
+
+repeating_timer_t data_timer;
+
+MS5607 altimeter(i2c_default);
int main() {
stdio_init_all();
i2c_init(i2c_default, MAX_SCL);
- gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
+ gpio_init(PICO_DEFAULT_I2C_SCL_PIN);
+ gpio_init(PICO_DEFAULT_I2C_SDA_PIN);
gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
- gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
- gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
+ gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
- uint8_t config[2] = {0};
+ altimeter.initialize();
+ heartbeat_initialize(PICO_DEFAULT_LED_PIN);
+ // gpio_init(PICO_DEFAULT_LED_PIN);
+ // gpio_set_dir(PICO_DEFAULT_LED_PIN, GPIO_OUT);
+ // gpio_put(PICO_DEFAULT_LED_PIN, 1);
- // Select control register(0x26)
- // Active mode, OSR = 16, altimeter mode(0xB8)
- config[0] = 0x26;
- config[1] = 0xB9;
- i2c_write_blocking(i2c_default, ALT_ADDR, config, 2, true);
- sleep_ms(1500);
+ add_repeating_timer_us(-1000000 / DATA_RATE_HZ, &data_callback, NULL, &data_timer);
while (1) {
- sleep_ms(1000);
- altitude = get_altitude();
- printf("Altitude: %4.2f\n", altitude);
+ sleep_ms(500);
+ printf("\n\nAltitude: %4.2f\nPressure: %4.2f\nTemperature: %4.2f\n", (float) altimeter.get_altitude() / ALTITUDE_SCALE_F, (float) altimeter.get_pressure() / PRESSURE_SCALE_F, (float) altimeter.get_temperature() / TEMPERATURE_SCALE_F);
}
}
-float get_altitude() {
- uint8_t reg = 0x01;
- uint8_t data[5];
- i2c_write_blocking(i2c_default, ALT_ADDR, &reg, 1, true);
- i2c_read_blocking(i2c_default, ALT_ADDR, data, 5, false);
- // Exactly how MPL3115A2 datasheet says to retrieve altitude
- float altitude = (float) ((int16_t) ((data[0] << 8) | data[1])) + (float) (data[2] >> 4) * 0.0625;
- return altitude;
+bool data_callback(repeating_timer_t *rt) {
+ altimeter.ms5607_start_sample();
+ return true;
}
-
diff --git a/tools/clock_gen_test.cpp b/tools/clock_gen_test.cpp
new file mode 100644
index 0000000..6cfdcdd
--- /dev/null
+++ b/tools/clock_gen_test.cpp
@@ -0,0 +1,22 @@
+#include <stdio.h>
+
+#include "boards/pico_w.h"
+#include "pico/stdio.h"
+#include "hardware/gpio.h"
+#include "hardware/clocks.h"
+#include "pico/time.h"
+
+//Generate a 40kHz square wave with duty 0.5 on pin 21
+int main() {
+ stdio_init_all();
+
+ //21 --> GPIO Selection, Pin 21 (Clock 0)
+ //0x6 --> Input selection, CLK_SYS as input (125MHz)
+ //3125 --> Clock Divider Int, 125MHz/40kHz = 3125
+ clock_gpio_init(21, 0x6, 3125);
+
+ while(1) {
+ printf("Clock may or may not be running?");
+ sleep_ms(1000);
+ }
+}
diff --git a/tools/imu_calib.cpp b/tools/imu_calib.cpp
deleted file mode 100644
index dc45f39..0000000
--- a/tools/imu_calib.cpp
+++ /dev/null
@@ -1,222 +0,0 @@
-#include <stdio.h>
-#include <stdint.h>
-#include <inttypes.h>
-#include <Eigen/Geometry>
-
-#include "pico/stdio.h"
-#include "hardware/gpio.h"
-#include "hardware/i2c.h"
-
-#define MAX_SCL 400000
-
-#define BNO055_OPR_MODE_ADDR 0x3D
-#define BNO055_OPR_MODE_CONFIG 0x00
-#define BNO055_SYS_TRIGGER_ADDR 0x3F
-#define BNO055_ADDRESS 0x28
-#define BNO055_CHIP_ID_ADDR 0x00
-#define BNO055_CHIP_ID 0xA0
-#define BNO055_OPR_MODE_NDOF 0x0C
-#define BNO055_CALIB_STAT_ADDR 0x35
-#define ACCEL_OFFSET_X_LSB_ADDR 0x55
-#define BNO055_LINEAR_ACCEL_DATA_X_LSB_ADDR 0x28
-#define BNO055_QUATERNION_DATA_W_LSB_ADDR 0x20
-#define UNIT_SELECTION 0x3B
-
-void get_calibration(uint8_t *sys, uint8_t *gyro, uint8_t *accel, uint8_t *mag);
-
-int main() {
- stdio_init_all();
-
- getchar();
-
- i2c_init(i2c_default, MAX_SCL);
- gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
- gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
- gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
- gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
-
- uint8_t buf[2] = {BNO055_CHIP_ID_ADDR};
-
- uint8_t id = 0x00;
- sleep_ms(1000);
- i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 1, false);
- i2c_read_blocking(i2c_default, BNO055_ADDRESS, &id, 1, false);
- while (id != BNO055_CHIP_ID) {
- i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 1, false);
- i2c_read_blocking(i2c_default, BNO055_ADDRESS, &id, 1, false);
- printf("Id not correct!, seeing: %" PRIu8 "\n", id);
- sleep_ms(10);
- }
-
- buf[0] = BNO055_OPR_MODE_ADDR;
- buf[1] = BNO055_OPR_MODE_CONFIG;
- i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false);
-
- buf[0] = BNO055_SYS_TRIGGER_ADDR;
- buf[1] = 0x20; // RESET
- i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false);
- sleep_ms(30);
-
- buf[0] = BNO055_CHIP_ID_ADDR;
- id = 0x00;
- while (id != BNO055_CHIP_ID) {
- i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 1, false);
- i2c_read_blocking(i2c_default, BNO055_ADDRESS, &id, 1, false);
- printf("Id not correct!, seeing: %" PRIu8 "\n", id);
- sleep_ms(10);
- }
-
- buf[0] = BNO055_SYS_TRIGGER_ADDR;
- buf[1] = 0x00; // RESET
- i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false);
- sleep_ms(30);
-
- // Set units to m/s^2
- buf[0] = UNIT_SELECTION;
- buf[1] = 0x00; // Windows, Celsius, Degrees, DPS, m/s^2
- i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false);
- sleep_ms(50);
-
- buf[0] = BNO055_OPR_MODE_ADDR;
- buf[1] = BNO055_OPR_MODE_NDOF;
- i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false);
-
- uint8_t gyro = 0x00, accel = 0x00, mag = 0x00;
-
- printf("Magnetometer: Perform the figure-eight calibration dance.\n");
- while (mag != 3) {
- // Calibration Dance Step One: Magnetometer
- // Move sensor away from magnetic interference or shields
- // Perform the figure-eight until calibrated
- get_calibration(NULL, NULL, NULL, &mag);
- printf("Mag Calib Status: %3.0f\n", (100 / 3 * mag));
- sleep_ms(1000);
- }
- printf("... CALIBRATED\n");
- sleep_ms(1000);
-
- printf("Accelerometer: Perform the six-step calibration dance.\n");
- while (accel != 3) {
- // Calibration Dance Step Two: Accelerometer
- // Place sensor board into six stable positions for a few seconds each:
- // 1) x-axis right, y-axis up, z-axis away
- // 2) x-axis up, y-axis left, z-axis away
- // 3) x-axis left, y-axis down, z-axis away
- // 4) x-axis down, y-axis right, z-axis away
- // 5) x-axis left, y-axis right, z-axis up
- // 6) x-axis right, y-axis left, z-axis down
- // Repeat the steps until calibrated
- get_calibration(NULL, NULL, &accel, NULL);
- printf("Accel Calib Status: %3.0f\n", (100 / 3 * accel));
- sleep_ms(1000);
- }
- printf("... CALIBRATED\n");
- sleep_ms(1000);
-
- printf("Gyroscope: Perform the hold-in-place calibration dance.\n");
- while (gyro != 3) {
- // Calibration Dance Step Three: Gyroscope
- // Place sensor in any stable position for a few seconds
- // (Accelerometer calibration may also calibrate the gyro)
- get_calibration(NULL, &gyro, NULL, NULL);
- printf("Gyro Calib Status: %3.0f\n", (100 / 3 * gyro));
- sleep_ms(1000);
- }
- printf("... CALIBRATED\n");
- sleep_ms(1000);
- printf("CALIBRATION COMPLETED\n");
-
- // Get Sensor Offsets
- buf[0] = BNO055_OPR_MODE_ADDR;
- buf[1] = BNO055_OPR_MODE_CONFIG;
- uint8_t sensor_offsets[22];
- i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false);
- sleep_ms(30);
-
- buf[0] = ACCEL_OFFSET_X_LSB_ADDR;
- i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 1, false);
- i2c_read_blocking(i2c_default, BNO055_ADDRESS, sensor_offsets, 18, false);
- for (uint8_t i = 0; i < 18; i++) {
- printf("sensor_offsets[%" PRIu8 "] = 0x%" PRIx8 ";\r\n", i + 1, sensor_offsets[i]);
- }
- sleep_ms(5000);
-
- buf[0] = BNO055_OPR_MODE_ADDR;
- buf[1] = BNO055_OPR_MODE_NDOF;
- i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false);
- sleep_ms(5000);
-
- getchar();
-
- uint8_t lin_accel[6];
- uint8_t quat[8];
- float accel_x, accel_y, accel_z;
- float abs_lin_accel_x, abs_lin_accel_y, abs_lin_accel_z;
- float abs_quaternion_w, abs_quaternion_x, abs_quaternion_y, abs_quaternion_z;
- while (1) {
- uint8_t lin_accel_reg = BNO055_LINEAR_ACCEL_DATA_X_LSB_ADDR;
- i2c_write_blocking(i2c_default, BNO055_ADDRESS, &lin_accel_reg, 1, true);
- i2c_read_blocking(i2c_default, BNO055_ADDRESS, lin_accel, 6, false);
- int16_t x, y, z;
- x = y = z = 0;
- x = ((int16_t)lin_accel[0]) | (((int16_t)lin_accel[1]) << 8);
- y = ((int16_t)lin_accel[2]) | (((int16_t)lin_accel[3]) << 8);
- z = ((int16_t)lin_accel[4]) | (((int16_t)lin_accel[5]) << 8);
- accel_x = ((float)x) / 100.0;
- accel_y = ((float)y) / 100.0;
- accel_z = ((float)z) / 100.0;
-
- uint8_t quat_reg = BNO055_QUATERNION_DATA_W_LSB_ADDR;
- i2c_write_blocking(i2c_default, BNO055_ADDRESS, &quat_reg, 1, true);
- i2c_read_blocking(i2c_default, BNO055_ADDRESS, quat, 8, false);
- int16_t w;
- w = x = y = z = 0;
- w = ((int16_t)quat[0]) | (((int16_t)quat[1]) << 8);
- x = ((int16_t)quat[2]) | (((int16_t)quat[3]) << 8);
- y = ((int16_t)quat[4]) | (((int16_t)quat[5]) << 8);
- z = ((int16_t)quat[6]) | (((int16_t)quat[7]) << 8);
- abs_quaternion_w = ((float)w) / 16384.0; // 2^14 LSB
- abs_quaternion_x = ((float)x) / 16384.0;
- abs_quaternion_y = ((float)y) / 16384.0;
- abs_quaternion_z = ((float)z) / 16384.0;
-
- Eigen::Quaternion<float> q;
- q.w() = abs_quaternion_w;
- q.x() = abs_quaternion_x;
- q.y() = abs_quaternion_y;
- q.z() = abs_quaternion_z;
- // q.normalize();
- Eigen::Matrix3f rotation_matrix = q.toRotationMatrix();
- Eigen::Vector3f lin_accel;
- abs_lin_accel_x = accel_x* rotation_matrix(0, 0) + accel_y * rotation_matrix(0, 1) + accel_z* rotation_matrix(0, 2);
- abs_lin_accel_y = accel_x * rotation_matrix(1, 0) + accel_y * rotation_matrix(1, 1) + accel_z * rotation_matrix(1, 2);
- abs_lin_accel_z = -1.0f * (accel_x * rotation_matrix(2, 0) + accel_y * rotation_matrix(2, 1) + accel_z * rotation_matrix(2, 2));
-
- printf("Acceleration Vector: %4.2f, %4.2f, %4.2f\n", accel_x, accel_y, accel_z);
- printf("Abs Acceleration Vector: %4.2f, %4.2f, %4.2f\n", abs_lin_accel_x, abs_lin_accel_y, abs_lin_accel_z);
- printf("Quaternion: %4.2f, %4.2f, %4.2f, %4.2f\n\n\n", abs_quaternion_w, abs_quaternion_x, abs_quaternion_y, abs_quaternion_z);
- sleep_ms(1000);
- }
-
- return 0;
-}
-
-void get_calibration(uint8_t *sys, uint8_t *gyro, uint8_t *accel, uint8_t *mag) {
- uint8_t buf[1] = {BNO055_CALIB_STAT_ADDR};
- uint8_t cal_data = 0x00;
- i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 1, false);
- i2c_read_blocking(i2c_default, BNO055_ADDRESS, &cal_data, 1, false);
- if (sys != NULL) {
- *sys = (cal_data >> 6) & 0x03;
- }
- if (gyro != NULL) {
- *gyro = (cal_data >> 4) & 0x03;
- }
- if (accel != NULL) {
- *accel = (cal_data >> 2) & 0x03;
- }
- if (mag != NULL) {
- *mag = cal_data & 0x03;
- }
-}
-
diff --git a/tools/read_flash.c b/tools/read_flash.c
deleted file mode 100644
index 91c75fb..0000000
--- a/tools/read_flash.c
+++ /dev/null
@@ -1,78 +0,0 @@
-#include <stdio.h>
-#include <inttypes.h>
-#include "boards/pico_w.h"
-#include "hardware/spi.h"
-#include "spi_flash.h"
-
-int main() {
- stdio_init_all();
- getchar();
- // Enable SPI 0 at 1 MHz and connect to GPIOs
- spi_init(spi_default, 1000 * 1000 * 60);
- gpio_set_function(PICO_DEFAULT_SPI_RX_PIN, GPIO_FUNC_SPI);
- gpio_set_function(PICO_DEFAULT_SPI_TX_PIN, GPIO_FUNC_SPI);
- gpio_set_function(PICO_DEFAULT_SPI_SCK_PIN, GPIO_FUNC_SPI);
-
- // Chip select is active-low, so we'll initialise it to a driven-high state
- gpio_init(PICO_DEFAULT_SPI_CSN_PIN);
- gpio_set_dir(PICO_DEFAULT_SPI_CSN_PIN, GPIO_OUT);
- gpio_put(PICO_DEFAULT_SPI_CSN_PIN, 1);
-
- uint8_t entry[PACKET_SIZE];
-
- // flash_erase(spi_default, PICO_DEFAULT_SPI_CSN_PIN);
- flash_read(spi_default, PICO_DEFAULT_SPI_CSN_PIN, base_addr, page_buffer, FLASH_PAGE_SIZE);
- for (uint16_t i = 0; i < FLASH_PAGE_SIZE; i += PACKET_SIZE) {
- if (page_buffer[i] == 0xFF) {
- base_addr += i;
- break;
- }
- if ((i + PACKET_SIZE) == FLASH_PAGE_SIZE) {
- base_addr += FLASH_PAGE_SIZE;
- flash_read(spi_default, PICO_DEFAULT_SPI_CSN_PIN, base_addr, page_buffer, FLASH_PAGE_SIZE);
- i = 0;
- }
- }
-
- printf("\nRead Data:\n");
- printf("time,state,board_temp,deploy_percent,altitude,velocity,lin_ax,lin_ay,lin_az,quat_w,quat_x,quat_y,quat_z\n");
- for (uint32_t i = 0; i < base_addr; i += PACKET_SIZE) {
- flash_read(spi_default, PICO_DEFAULT_SPI_CSN_PIN, i, entry, PACKET_SIZE);
- uint64_t now_us = (((uint64_t)entry[0] << 56) | ((uint64_t)entry[1] << 48) | \
- ((uint64_t)entry[2] << 40) | ((uint64_t)entry[3] << 32) | \
- ((uint64_t)entry[4] << 24) | ((uint64_t)entry[5] << 16) | \
- ((uint64_t)entry[6] << 8) | ((uint64_t)entry[7]));
-
- uint8_t state = entry[8] >> 4;
- uint16_t temperature_data = ((uint16_t)(entry[8] & 0x0F) << 8) | ((uint16_t)entry[9]);
- const float conversionFactor = 3.3f / (1 << 12);
- float tempC = 27.0f - (((float)(temperature_data) * conversionFactor) - 0.706f) / 0.001721f;
-
- uint8_t deploy_percent = entry[10];
-
- float altitude = (float) ((int16_t) ((entry[11] << 8) | entry[12])) + (float) (entry[13] >> 4) * 0.0625;
- uint32_t vel_bits = (entry[14] << 24) | (entry[15] << 16) | (entry[16] << 8) | (entry[17]);
- float velocity = *(float *)(&vel_bits);
-
- int16_t ax = ((int16_t)entry[18]) | (((int16_t)entry[19]) << 8);
- int16_t ay = ((int16_t)entry[20]) | (((int16_t)entry[21]) << 8);
- int16_t az = ((int16_t)entry[22]) | (((int16_t)entry[23]) << 8);
- float lax = ((float)ax) / 100.0;
- float lay = ((float)ay) / 100.0;
- float laz = ((float)az) / 100.0;
-
- int16_t w, x, y, z;
- w = x = y = z = 0;
- w = ((int16_t)entry[24]) | (((int16_t)entry[25]) << 8);
- x = ((int16_t)entry[26]) | (((int16_t)entry[27]) << 8);
- y = ((int16_t)entry[28]) | (((int16_t)entry[29]) << 8);
- z = ((int16_t)entry[30]) | (((int16_t)entry[31]) << 8);
- float qw = ((float)w) / 16384.0;
- float qx = ((float)x) / 16384.0;
- float qy = ((float)y) / 16384.0;
- float qz = ((float)z) / 16384.0;
-
- printf("%"PRIu64",%"PRIu8",%04.2f,%"PRIu8",%04.2f,%04.2f,%04.2f,%04.2f,%04.2f,%04.2f,%04.2f,%04.2f,%04.2f\r\n", \
- now_us, state, tempC, deploy_percent, altitude, velocity, lax, lay, laz, qw, qx, qy, qz);
- }
-}
diff --git a/tools/read_flash.cpp b/tools/read_flash.cpp
new file mode 100644
index 0000000..b3305aa
--- /dev/null
+++ b/tools/read_flash.cpp
@@ -0,0 +1,538 @@
+#include <stdlib.h>
+#include <stdio.h>
+#include <string.h>
+#include <inttypes.h>
+
+#include <cmath> //TODO: Reimplement math properly using Eigen functions
+#include <sstream> //TODO: This is for debug purposes, remove when implemented
+#include <Eigen/Dense>
+using namespace Eigen; //TODO: Limit scope to necessary components once implemented
+
+#include "hardware/gpio.h"
+#include "hardware/i2c.h"
+#include "hardware/adc.h"
+#include <hardware/timer.h>
+#include "pico/rand.h"
+#include "pico/stdlib.h"
+#include "pico/stdio.h"
+#include "pico/multicore.h"
+#include "pico/time.h"
+#include <pico/error.h>
+#include <pico/types.h>
+
+/* Kernel includes. */
+#include "FreeRTOS.h"
+#include "FreeRTOSConfig.h"
+#include "portmacro.h"
+#include "projdefs.h"
+#include "serial.hpp"
+#include "task.h"
+#include "semphr.h"
+
+#include "heartbeat.hpp"
+#include "adxl375.hpp"
+#include "ms5607.hpp"
+#include "iim42653.hpp"
+#include "mmc5983ma.hpp"
+#include "serial.hpp"
+#include "pico_logger.h"
+#include "log_format.hpp"
+
+/* Priorities at which the tasks are created. */
+#define EVENT_HANDLER_PRIORITY ( tskIDLE_PRIORITY + 4 )
+#define SENSOR_SAMPLE_PRIORITY ( tskIDLE_PRIORITY + 3 )
+#define HEARTBEAT_TASK_PRIORITY ( tskIDLE_PRIORITY + 2 )
+#define LOGGING_PRIORITY ( tskIDLE_PRIORITY + 2 )
+#define SERIAL_TASK_PRIORITY ( tskIDLE_PRIORITY + 1 )
+
+#define SENSOR_SAMPLE_RATE_HZ 500
+#define ORIENTATION_ESTIMATION_RATE_HZ 5
+
+#define MAX_SCL 400000
+
+static void populate_log_entry(log_entry_t * log_entry);
+static void sample_cmd_func();
+static void debug_cmd_func();
+static void circular_cmd_func();
+static void read_cmd_func();
+static void write_cmd_func();
+static void erase_cmd_func();
+static void orient_cmd_func();
+static void logging_task(void * unused_arg);
+
+void vApplicationTickHook(void) { /* optional */ }
+void vApplicationMallocFailedHook(void) { /* optional */ }
+void vApplicationStackOverflowHook(TaskHandle_t xTask, char *pcTaskName) { for( ;; ); }
+
+const char* executeable_name = "read_flash.uf2";
+const size_t num_user_cmds = 7;
+const command_t user_commands[] = { {.name = "sample",
+ .len = 6,
+ .function = &sample_cmd_func},
+ {.name = "debug",
+ .len = 5,
+ .function = &debug_cmd_func},
+ {.name = "circular",
+ .len = 8,
+ .function = &circular_cmd_func},
+ {.name = "read",
+ .len = 4,
+ .function = &read_cmd_func},
+ {.name = "write",
+ .len = 5,
+ .function = &write_cmd_func},
+ {.name = "erase",
+ .len = 5,
+ .function = &erase_cmd_func},
+ {.name = "orient",
+ .len = 6,
+ .function = &orient_cmd_func} };
+
+volatile bool serial_data_output = false;
+volatile bool use_circular_buffer = false;
+
+MS5607 alt(i2c_default);
+ADXL375 adxl375(i2c_default);
+IIM42653 iim42653(i2c_default);
+MMC5983MA mmc5983ma(i2c_default);
+
+Logger logger(PACKET_SIZE, LOG_BASE_ADDR, print_log_entry);
+
+volatile TaskHandle_t logging_handle = NULL;
+
+int main() {
+ stdio_init_all();
+
+ adc_init();
+ adc_set_temp_sensor_enabled(true);
+
+ gpio_init(PICO_DEFAULT_LED_PIN);
+ gpio_set_dir(PICO_DEFAULT_LED_PIN, GPIO_OUT);
+ gpio_put(PICO_DEFAULT_LED_PIN, 0);
+
+ i2c_init(i2c_default, MAX_SCL);
+ gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
+ gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
+ gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
+ gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
+
+ sleep_ms(2500);
+
+ info_cmd_func();
+ stdio_flush();
+
+ logger.initialize(true);
+
+ alt.initialize();
+ sleep_ms(500);
+ adxl375.initialize();
+ sleep_ms(500);
+ iim42653.initialize();
+ sleep_ms(500);
+ mmc5983ma.initialize();
+ sleep_ms(500);
+
+ xTaskCreate(heartbeat_task, "heartbeat", 256, NULL, HEARTBEAT_TASK_PRIORITY, NULL);
+ xTaskCreate(serial_task, "serial", 8192, NULL, SERIAL_TASK_PRIORITY, NULL);
+
+ vTaskStartScheduler();
+
+ while (1) {
+ tight_loop_contents();
+ }
+}
+
+static void logging_task(void * unused_arg) {
+ TickType_t xLastWakeTime;
+ const TickType_t xFrequency = pdMS_TO_TICKS(1000 / 10);
+
+ xLastWakeTime = xTaskGetTickCount();
+ printf("Time,Pressure,Altitude,Temperature,ax,ay,az,ax,ay,az,gx,gy,gz,ax,ay,az\n");
+ while (1) {
+ vTaskDelayUntil(&xLastWakeTime, xFrequency);
+// printf("%" PRIu64 ",", time_us_64());
+// printf("%4.2f,", ((float) alt.get_pressure()) / PRESSURE_SCALE_F);
+// printf("%4.2f,", ((float) alt.get_altitude()) / ALTITUDE_SCALE_F);
+// printf("%4.2f,", ((float) alt.get_temperature()) / TEMPERATURE_SCALE_F);
+// printf("%4.2f,", adxl375.scale(adxl375.get_ax()));
+// printf("%4.2f,", adxl375.scale(adxl375.get_ay()));
+// printf("%4.2f,", adxl375.scale(adxl375.get_az()));
+// printf("%4.2f,", iim42653.scale_accel(iim42653.get_ax()));
+// printf("%4.2f,", iim42653.scale_accel(iim42653.get_ay()));
+// printf("%4.2f,", iim42653.scale_accel(iim42653.get_az()));
+// printf("%4.2f,", iim42653.scale_gyro(iim42653.get_gx()));
+// printf("%4.2f,", iim42653.scale_gyro(iim42653.get_gy()));
+// printf("%4.2f,", iim42653.scale_gyro(iim42653.get_gz()));
+// printf("%" PRIi16 ",", mmc5983ma.get_ax());
+// printf("%" PRIi16 ",", mmc5983ma.get_ay());
+// printf("%" PRIi16 ",", mmc5983ma.get_az());
+// printf("\r\n");
+ log_entry_t log_entry;
+ populate_log_entry(&log_entry);
+ printf("\nWriting the following entry!\n");
+ print_log_entry(reinterpret_cast<const uint8_t *>(&log_entry));
+ if (use_circular_buffer) {
+ logger.write_circular_buffer(reinterpret_cast<const uint8_t *>(&log_entry));
+ } else {
+ logger.write_memory(reinterpret_cast<const uint8_t *>(&log_entry), true);
+ }
+ stdio_flush();
+ }
+
+}
+
+//TODO: This task is getting increasingly complex and involved, it may be worth migrating to a class of its own
+static void pose_estimation_task(void * unused_arg) {
+ printf("--POSE: INITIALIZING DATA MEMBERS\n");
+ TickType_t xLastWakeTime;
+ const TickType_t xFrequency = pdMS_TO_TICKS(1000 / ORIENTATION_ESTIMATION_RATE_HZ);
+ xLastWakeTime = xTaskGetTickCount();
+ int orient_count = 0;
+
+ Quaternionf q_k(1, 0, 0, 0); //Initialize to straight upright
+ Quaternionf q_k_est = q_k;
+ Matrix4f P_k = Matrix4f::Identity()*0.01f; //TODO: Tune this initialization value
+ Matrix4f P_k_est = P_k;
+
+ //TODO: Store covariance values somewhere reasonable instead of hardcoding them
+ Matrix3f gyro_covariance = Matrix3f::Identity()*0.05f*M_PI/180.0f; //0.05deg/s RMSE @ 100HZ Bandwidth
+ Matrix<float, 6, 6> accel_mag_covariance;
+ accel_mag_covariance << 0.00065f, 0, 0, 0, 0, 0,
+ 0, 0.00065f, 0, 0, 0, 0,
+ 0, 0, 0.00070f, 0, 0, 0,
+ 0, 0, 0, 0.00120f, 0, 0,
+ 0, 0, 0, 0, 0.00120f, 0,
+ 0, 0, 0, 0, 0, 0.00120f;
+ //accel_mag_covariance *= 3;
+
+ //Stored intermediate equation matrices
+ Matrix4f gyro_skew; //Skew-symmetric matrix equivalent of gyroscope output
+ Matrix4f I_4 = Matrix4f::Identity(); //4x4 Identity matrix, used for F_k calculation
+
+ Matrix4f F_k; //State Transition Matrix
+ Matrix4f H_k; //Observation Matrix
+ Matrix4f K_k; //Kalman Gain Matrix
+ Matrix<float, 4, 3> J_process_k; //Jacobian for process (gyro) covariance transformation
+ Matrix<float, 4, 6> J_observation_k; //Jacobian for observation (accel/mag) covariance transformation
+ Matrix4f process_noise_transformed; //Matrix of transformed process noise
+ Matrix4f observation_noise_transformed; //Matrix of transformed observation noise
+ Matrix<float, 4, 1> z_k; //Measurement vector
+ Matrix<float, 4, 1> z_k_est; //Estimated measurement vector, used for Kalman filter calculation
+
+ while (1) {
+ vTaskDelayUntil(&xLastWakeTime, xFrequency);
+
+ //printf("-------- BEGINNING UPDATE COMPUTATION --------\n");
+ //Get all required sensor values and compute intermediate values
+ float imu_ax = -IIM42653::scale_accel(iim42653.get_ax());
+ float imu_ay = -IIM42653::scale_accel(iim42653.get_ay());
+ float imu_az = IIM42653::scale_accel(iim42653.get_az());
+ float imu_gx = -IIM42653::scale_gyro(iim42653.get_gx())/180.0f*M_PI;
+ float imu_gy = -IIM42653::scale_gyro(iim42653.get_gy())/180.0f*M_PI;
+ float imu_gz = IIM42653::scale_gyro(iim42653.get_gz())/180.0f*M_PI;
+ float mag_x = -MMC5983MA::scale_mag(mmc5983ma.get_ay()); //TODO: Not convinced mag axes are correct
+ float mag_y = MMC5983MA::scale_mag(mmc5983ma.get_ax());
+ float mag_z = -MMC5983MA::scale_mag(mmc5983ma.get_az());
+
+ //Normalize accelerometer and magnetometer measurements
+ float imu_a_mag = std::sqrt(std::pow(imu_ax, 2) + std::pow(imu_ay, 2) + std::pow(imu_az, 2));
+ float mag_mag = std::sqrt(std::pow(mag_x, 2) + std::pow(mag_y, 2) + std::pow(mag_z, 2));
+ imu_ax /= imu_a_mag;
+ imu_ay /= imu_a_mag;
+ imu_az /= imu_a_mag;
+ mag_x /= mag_mag;
+ mag_y /= mag_mag;
+ mag_z /= mag_mag;
+
+ printf("--- [I] INITIALIZATION | IMU Accel direct outputs (x, y, z): [%4.3f, %4.3f, %4.3f]\n", imu_ax, imu_ay, imu_az);
+ printf("--- [I] INITIALIZATION | IMU Gyro direct outputs (x, y, z): [%4.3f, %4.3f, %4.3f]\n", imu_gx, imu_gy, imu_gz);
+ printf("--- [I] INITIALIZATION | Magnetometer direct outputs (x, y, z): [%4.3f, %4.3f, %4.3f]\n", mag_x, mag_y, mag_z);
+
+ float mag_D = imu_ax*mag_x + imu_ay*mag_y + imu_az*mag_z;
+ float mag_N = std::sqrt(1.0f - std::pow(mag_D, 2));
+ printf("--- [I] INITIALIZATION | Magnetometer values (mag_mag, mag_D, mag_N): [%2.4f, %2.4f, %2.4f]\n", mag_mag, mag_D, mag_N);
+
+ //UPDATE | Calculate Kalman gain
+ //TODO: This Jacobian calculation is FUGLY, and very computationally intensive
+ // Separate out common math, vectorize, and put it in a function somewhere?
+ float pd_mD_ax = mag_x/(2*mag_D);
+ float pd_mD_ay = mag_y/(2*mag_D);
+ float pd_mD_az = mag_z/(2*mag_D);
+ float pd_mD_mx = imu_ax/(2*mag_D);
+ float pd_mD_my = imu_ay/(2*mag_D);
+ float pd_mD_mz = imu_az/(2*mag_D);
+ float pd_mN_ax = -mag_D/mag_N*pd_mD_ax;
+ float pd_mN_ay = -mag_D/mag_N*pd_mD_ay;
+ float pd_mN_az = -mag_D/mag_N*pd_mD_az;
+ float pd_mN_mx = -mag_D/mag_N*pd_mD_mx;
+ float pd_mN_my = -mag_D/mag_N*pd_mD_my;
+ float pd_mN_mz = -mag_D/mag_N*pd_mD_mz;
+ float common_num = (imu_ay*mag_z - imu_az*mag_y);
+ float common_denom = std::pow(mag_N, 2);
+
+ float J_o_4_1 = (-pd_mN_ax*common_num)/common_denom;
+ float J_o_4_2 = (mag_z*mag_N - pd_mN_ay*common_num)/common_denom;
+ float J_o_4_3 = (-mag_y*mag_N - pd_mN_az*common_num)/common_denom;
+ float J_o_4_4 = (-pd_mN_mx*common_num)/common_denom;
+ float J_o_4_5 = (-imu_az*mag_N - pd_mN_my*common_num)/common_denom;
+ float J_o_4_6 = (imu_ay*mag_N - pd_mN_mz*common_num)/common_denom;
+ J_observation_k << 1.0f, 0, 0, 0, 0, 0,
+ 0, 1.0f, 0, 0, 0, 0,
+ 0, 0, 1.0f, 0, 0, 0,
+ J_o_4_1, J_o_4_2, J_o_4_3, J_o_4_4, J_o_4_5, J_o_4_6;
+ //printf("- [U] CALC KALMAN GAIN | [J_o_4_1 - J_o_4_6] after calculation, from J_observation_k: [%4.2f | %4.2f | %4.2f | %4.2f | %4.2f | %4.2f]\n", J_observation_k(3, 0), J_observation_k(3, 1), J_observation_k(3, 2), J_observation_k(3, 3), J_observation_k(3, 4), J_observation_k(3, 5));
+
+ observation_noise_transformed = J_observation_k*accel_mag_covariance*J_observation_k.transpose();
+ //printf("- [U] CALC KALMAN GAIN | Diagonal of observation_noise_transformed after transformation: [%2.4f, %2.4f, %2.4f, %2.4f]\n", observation_noise_transformed(0, 0), observation_noise_transformed(1, 1), observation_noise_transformed(2, 2), observation_noise_transformed(3, 3));
+
+ H_k << -q_k.y(), q_k.z(), -q_k.w(), q_k.x(),
+ q_k.x(), q_k.w(), q_k.z(), q_k.y(),
+ q_k.w(), -q_k.x(), -q_k.y(), q_k.z(),
+ q_k.z(), q_k.y(), q_k.x(), q_k.w();
+ H_k *= 2;
+ //printf("- [U] CALC KALMAN GAIN | First column of H_k after computation: [%2.4f, %2.4f, %2.4f, %2.4f]\n", H_k(0, 0), H_k(1, 0), H_k(2, 0), H_k(3, 0));
+
+ K_k = P_k*H_k.transpose()*(H_k*P_k*H_k.transpose() + observation_noise_transformed).inverse();
+ //printf("- [U] CALC KALMAN GAIN | First column of K_k after computation: [%2.4f, %2.4f, %2.4f, %2.4f]\n", K_k(0, 0), K_k(1, 0), K_k(2, 0), K_k(3, 0));
+
+ //UPDATE | Calculate current state estimate based on accel/mag measurements
+ z_k << imu_ax, imu_ay, imu_az, ((imu_ay*mag_z - imu_az*mag_y)/mag_N);
+ z_k_est = H_k*q_k_est.coeffs(); //TODO: Confirm quaternion multiplication, output and check
+ q_k = q_k_est.coeffs() + K_k*(z_k - z_k_est); //TODO: Confirm quaternion arithmetic, output and check
+ q_k.normalize(); //Ensure state output is a proper rotation quaternion
+ //printf("- [U] CALC STATE ESTIMATE | See below block for direct output\n");
+
+ //UPDATE | Calculate state covariance based on accel/mag measurements
+ P_k = (I_4 - K_k*H_k)*P_k_est;
+ //printf("- [U] CALC STATE COVAR | First column of P_k after computation: [%2.4f, %2.4f, %2.4f, %2.4f]\n", P_k(0, 0), P_k(1, 1), P_k(2, 2), P_k(3, 3));
+
+ //printf("-------- COMPLETED UPDATE COMPUTATION! --------\n\n");
+ //if (orient_count == ORIENTATION_ESTIMATION_RATE_HZ) {
+ printf("~~> Estimate (q_k) Coefficients [w, x, y, z]: [%1.4f, %1.4f, %1.4f, %1.4f]\n", q_k.w(), q_k.x(), q_k.y(), q_k.z());
+ Vector3f testVect = q_k.toRotationMatrix().eulerAngles(2, 1, 0)*180.0f/M_PI;
+ printf("~~> Estimate (q_k) in Euler [Yaw, Pitch, Roll]: [%3.3f, %3.3f, %3.3f]\n", testVect[0], testVect[1], testVect[2]);
+ Vector3f testAccelVect(imu_ax, imu_ay, imu_az);
+ Vector3f testAccelVectRotated = q_k._transformVector(testAccelVect);
+ printf("~~> Estimate (q_k) rotated accel magnitude vector: [%2.4f, %2.4f, %2.4f]\n\n", testAccelVectRotated[0], testAccelVectRotated[1], testAccelVectRotated[2]);
+
+ // orient_count = 0;
+ //}
+ //orient_count++;
+
+ //printf("-------- BEGINNING PREDICT COMPUTATION --------\n");
+
+ //Predict next state based on gyroscope measurements
+ gyro_skew << 0, -imu_gx, -imu_gy, -imu_gz,
+ imu_gx, 0, imu_gz, -imu_gy,
+ imu_gy, -imu_gz, 0, imu_gx,
+ imu_gz, imu_gy, -imu_gx, 0;
+ //printf("- [P] PREDICT STATE | Top second element of gyro_skew after set: [%4.2f]\n", gyro_skew(0, 1));
+
+ F_k = I_4 + (0.5f/ORIENTATION_ESTIMATION_RATE_HZ)*gyro_skew;
+ //printf("- [P] PREDICT STATE | First column of F_k after set: [%2.4f, %2.4f, %2.4f, %2.4f]\n", F_k(0, 0), F_k(1, 0), F_k(2, 0), F_k(3, 0));
+
+ q_k_est = F_k*q_k.coeffs();
+ q_k_est.normalize(); //TODO: CONFIRM normalization necessary at intermediary steps
+ //printf("- [P] PREDICT STATE | State estimate (q_k_est) coefficients after predict step: [%1.4f, %1.4f, %1.4f, %1.4f]\n", q_k_est.w(), q_k_est.x(), q_k_est.y(), q_k_est.z());
+
+ //Predict next covariance based on gyroscope measurements + Jacobian-transformed measurement variance
+ J_process_k << q_k.x(), q_k.y(), q_k.z(),
+ -1.0f*q_k.w(), q_k.z(), -1.0f*q_k.y(),
+ -1.0f*q_k.z(), -1.0f*q_k.w(), q_k.x(),
+ q_k.y(), -1.0f*q_k.x(), -1.0f*q_k.w();
+ //printf("- [P] PREDICT COVAR | Top left element of J_process_k after computation: [%4.2f]\n", J_process_k(0, 0));
+
+ process_noise_transformed = std::pow(0.5f/ORIENTATION_ESTIMATION_RATE_HZ, 2) *
+ J_process_k*gyro_covariance*J_process_k.transpose();
+ //printf("- [P] PREDICT COVAR | Diagonal of process_noise_transformed after transformation: [%2.4f, %2.4f, %2.4f, %2.4f]\n", process_noise_transformed(0, 0), process_noise_transformed(1, 1), process_noise_transformed(2, 2), process_noise_transformed(3, 3));
+
+ P_k_est = F_k*P_k*F_k.transpose() + process_noise_transformed;
+ //printf("- [P] PREDICT COVAR | Diagonal of P_k_est after prediction computation: [%2.4f, %2.4f, %2.4f, %2.4f]\n", P_k_est(0, 0), P_k_est(1, 1), P_k_est(2, 2), P_k_est(3, 3));
+ //printf("-------- PREDICT COMPUTATION COMPLETED! --------\n\n\n");
+ }
+}
+
+static void sample_cmd_func() {
+ static bool sampling = false;
+
+ if (sampling == false) {
+ vTaskSuspendAll();
+
+ xTaskCreate(MS5607::update_ms5607_task, "update_ms5607", 256, &alt, SENSOR_SAMPLE_PRIORITY, &(alt.update_task_handle));
+ xTaskCreate(ADXL375::update_adxl375_task, "update_adxl375", 256, &adxl375, SENSOR_SAMPLE_PRIORITY, &(adxl375.update_task_handle));
+ xTaskCreate(IIM42653::update_iim42653_task, "update_iim42653", 256, &iim42653, SENSOR_SAMPLE_PRIORITY, &(iim42653.update_task_handle));
+ xTaskCreate(MMC5983MA::update_mmc5983ma_task, "update_mmc5983ma", 256, &mmc5983ma, SENSOR_SAMPLE_PRIORITY, &(mmc5983ma.update_task_handle));
+
+ xTaskCreate(MS5607::ms5607_sample_handler, "ms5607_sample_handler", 256, &alt, EVENT_HANDLER_PRIORITY, &(alt.sample_handler_task_handle));
+
+ vTaskCoreAffinitySet( alt.update_task_handle, 0x01 );
+ vTaskCoreAffinitySet( adxl375.update_task_handle, 0x01 );
+ vTaskCoreAffinitySet( iim42653.update_task_handle, 0x01 );
+ vTaskCoreAffinitySet( mmc5983ma.update_task_handle, 0x01 );
+
+ vTaskCoreAffinitySet( alt.sample_handler_task_handle, 0x01 );
+ sampling = true;
+ xTaskResumeAll();
+ } else {
+ printf("Stopping sample!\n");
+ vTaskSuspendAll();
+
+ vTaskDelete(alt.update_task_handle);
+ vTaskDelete(adxl375.update_task_handle);
+ vTaskDelete(iim42653.update_task_handle);
+ vTaskDelete(mmc5983ma.update_task_handle);
+
+ vTaskDelete(alt.sample_handler_task_handle);
+
+ alt.update_task_handle = NULL;
+ adxl375.update_task_handle = NULL;
+ iim42653.update_task_handle = NULL;
+ mmc5983ma.update_task_handle = NULL;
+
+ alt.sample_handler_task_handle = NULL;
+
+ sampling = false;
+ xTaskResumeAll();
+ }
+}
+
+
+static void debug_cmd_func() {
+ if (logging_handle == NULL) {
+ vTaskSuspendAll();
+ xTaskCreate(logging_task, "logging", 256, NULL, LOGGING_PRIORITY, const_cast<TaskHandle_t *>(&logging_handle));
+ vTaskCoreAffinitySet(logging_handle, 0x02);
+ xTaskResumeAll();
+ } else {
+ vTaskSuspendAll();
+ vTaskDelete(logging_handle);
+ logging_handle = NULL;
+ xTaskResumeAll();
+ }
+}
+
+static void circular_cmd_func() {
+ if (logging_handle != NULL) {
+ vTaskSuspend(logging_handle);
+ }
+ if (!use_circular_buffer) {
+ logger.initialize_circular_buffer(PAD_BUFFER_SIZE);
+ use_circular_buffer = true;
+ } else {
+ logger.flush_circular_buffer(true);
+ use_circular_buffer = false;
+ }
+ if (logging_handle != NULL) {
+ vTaskResume(logging_handle);
+ }
+}
+
+static void read_cmd_func() {
+ if (logging_handle != NULL) {
+ vTaskSuspend(logging_handle);
+ }
+ if (use_circular_buffer) {
+ logger.read_circular_buffer();
+ } else {
+ logger.read_memory();
+ }
+ vTaskResume(logging_handle);
+}
+
+static void populate_log_entry(log_entry_t * log_entry) {
+ log_entry->time_us = time_us_64();
+
+ adc_select_input(4);
+ log_entry->temperature_chip = adc_read();
+ log_entry->state = PAD;
+ log_entry->deploy_percent = 80;
+ log_entry->pressure = alt.get_pressure();
+ log_entry->altitude = alt.get_altitude();
+ log_entry->temperature_alt = alt.get_temperature();
+
+ log_entry->ax = iim42653.get_ax();
+ log_entry->ay = iim42653.get_ay();
+ log_entry->az = iim42653.get_az();
+ log_entry->gx = iim42653.get_gx();
+ log_entry->gy = iim42653.get_gy();
+ log_entry->gz = iim42653.get_gz();
+
+ log_entry->mag_x = mmc5983ma.get_ax();
+ log_entry->mag_y = mmc5983ma.get_ay();
+ log_entry->mag_z = mmc5983ma.get_az();
+
+ log_entry->high_g_x = adxl375.get_ax();
+ log_entry->high_g_y = adxl375.get_ay();
+ log_entry->high_g_z = adxl375.get_az();
+
+ log_entry->data0 = get_rand_64();
+ log_entry->data1 = get_rand_64();
+ log_entry->data2 = get_rand_32();
+ log_entry->data3 = get_rand_32();
+}
+
+static void write_cmd_func() {
+ if (logging_handle != NULL) {
+ vTaskSuspend(logging_handle);
+ }
+ uint64_t start = time_us_64();
+ log_entry_t log_entry;
+ populate_log_entry(&log_entry);
+ printf("\nWriting the following entry!\n");
+ print_log_entry(reinterpret_cast<const uint8_t *>(&log_entry));
+ if (use_circular_buffer) {
+ logger.write_circular_buffer(reinterpret_cast<const uint8_t *>(&log_entry));
+ } else {
+ logger.write_memory(reinterpret_cast<const uint8_t *>(&log_entry), true);
+ }
+ uint64_t end = time_us_64();
+ printf("\nTook %" PRIu64 " us to write that entry!\n", (end - start));
+ if (logging_handle != NULL) {
+ vTaskResume(logging_handle);
+ }
+}
+
+static void erase_cmd_func() {
+ if (logging_handle != NULL) {
+ vTaskSuspend(logging_handle);
+ }
+ logger.erase_memory();
+ if (logging_handle != NULL) {
+ vTaskResume(logging_handle);
+ }
+}
+
+static void orient_cmd_func() {
+ /*
+ float pitch_rad = std::atan(imu_ay/std::sqrt(std::pow(imu_ax, 2) + std::pow(imu_az, 2)));
+ float roll_rad = std::atan(imu_ax/std::sqrt(std::pow(imu_ay, 2) + std::pow(imu_az, 2)));
+ float yaw_rad = std::atan2(-mag_y*std::cos(roll_rad) + mag_z*std::sin(roll_rad),
+ mag_x*std::cos(pitch_rad) + mag_y*std::sin(pitch_rad)*std::sin(roll_rad) + mag_z*std::cos(roll_rad) * std::sin(pitch_rad));
+ */
+
+ static TaskHandle_t pose_estimation_handle = NULL;
+ static bool estimating = false;
+
+ if (!estimating) {
+ printf("================ BEGINNING STATE ESTIMATION ================\n");
+ vTaskSuspendAll();
+
+ //TODO: Assign pose estimation unique priority?
+ xTaskCreate(pose_estimation_task, "pose_estimation", 1024, NULL,
+ SENSOR_SAMPLE_PRIORITY, &pose_estimation_handle);
+ vTaskCoreAffinitySet( pose_estimation_handle, 0x01 );
+
+ estimating = true;
+ xTaskResumeAll();
+ } else {
+ printf("================= ENDING STATE ESTIMATION ================\n");
+ vTaskSuspendAll();
+
+ vTaskDelete(pose_estimation_handle);
+ pose_estimation_handle = NULL;
+
+ estimating = false;
+ xTaskResumeAll();
+ }
+}
+
diff --git a/tools/servo_test.cpp b/tools/servo_test.cpp
index c5e8e6e..9c26c25 100644
--- a/tools/servo_test.cpp
+++ b/tools/servo_test.cpp
@@ -3,16 +3,14 @@
#include "pico/stdio.h"
#include "pwm.hpp"
-#define MOSFET_PIN 1
-
PWM pwm;
int main() {
stdio_init_all();
// Initialize MOSFET
- gpio_init(MOSFET_PIN);
- gpio_set_dir(MOSFET_PIN, GPIO_OUT);
- gpio_put(MOSFET_PIN, 1);
+ gpio_init(MICRO_DEFAULT_SERVO_ENABLE);
+ gpio_set_dir(MICRO_DEFAULT_SERVO_ENABLE, GPIO_OUT);
+ gpio_put(MICRO_DEFAULT_SERVO_ENABLE, 1);
pwm.init();
uint8_t duty_cycle = 13;
while (1) {