diff options
| author | Dawsyn Schraiber <[email protected]> | 2024-05-09 02:05:35 -0400 |
|---|---|---|
| committer | GitHub <[email protected]> | 2024-05-09 02:05:35 -0400 |
| commit | 93acde052369568beaefb0d99629d8797f5c191f (patch) | |
| tree | a3fb96ddad2d289aa7f8bf410c60cf6289bca7a1 /src/AltEst | |
| parent | 5f68c7a1b5c8dec82d4a2e1e12443a41b5196b1d (diff) | |
| download | active-drag-system-93acde052369568beaefb0d99629d8797f5c191f.tar.gz active-drag-system-93acde052369568beaefb0d99629d8797f5c191f.tar.bz2 active-drag-system-93acde052369568beaefb0d99629d8797f5c191f.zip | |
Raspberry Pi Pico (#12)
* Adding a 90% completed, compilable but untested ADS
* Made basic changes to actuator & sensor. Also added motor class
* Removed unnecessary .cpp files
* Updated sensor & actuator classes, finished ads, added variable time step to kalman filter, set up all tests for future assertions
* Relocated 'main' to 'active-drag-system.cpp'. Added more info to README
* Removed main.cpp
* Added more details to README
* Changed some function parameters from pass-by-pointer to pass-by-reference. Also removed the std namespace
* Started writing the test cases
* Updated the .gitignore file
* Removed some files that should be gitignored
* Up to date with Jazz's pull request
* Test Launch Branch Created; PRU Servo Control with Test Program
* Added I2C device class and register IDs for MPL [INCOMPLETE SENSOR IMPLEMENTATION]
Needs actual data getting function implementation for both sensors and register IDs for BNO, will implement shortly.
* Partial implementation of MPL sensor
Added startup method, still needs fleshed out data getters and setters and finished I2C implementation. MOST LIKELY WILL HAVE COMPILATION ISSUES.
* *Hypothetically* complete MPL implementation
NEEDS HARDWARE TESTING
* IMU Header and init() method implementation
Needs like, all data handling still lol
* Hypothetically functional (Definitely won't compile)
* We ball?
* Conversion to Raspberry Pi Pico Build System; Removed Beaglebone
specific code; Simple blinking example in ADS source file; builds for
Pico W
* Rearranged build so dependent upon cmake file already existing in pico-sdk; current executable prints current altitude, velocity, and time taken to read and calculate said values; ~320 us to do so
* Altimeter interrupt callback for Pad to Boost State; dummy templates for other callbacks with comments describing potential implementation details
* Altimeter interrupts relatively finished; need to test with vacuum chamber to verify behavior
* Established interrupt pins as pullup and active-low; adjusted callback functions to properly use function pointers; still need to verify interrupt system with vacuum chamber
* Removed weird artifact in .gitignore, adjust CMakeLists to auto pull pico sdk, added Dockerfile
* added Docker dev container file
* modified CMakeLists to auto pull sdk if not already downloaded, add build.sh script, fixed Dockerfile
* added bno055 support
* changed bno055 lin accel struct to use float instead of double
* added bno055 support not tested, but compiles, fixed CMakLists to before I messed with it
* added absolute quaternion output from bno055
* Added Euler and aboslute linear accelration
* Flash implementation for data logging; each log entry is 32 bytes long
* added base pwm functions and started on apogee detection
* State machine verified functional with logging capabilities; currently on same core
* Ooops missed double define, renamed LOOP_HZ to LOOP_PERIOD; State machine functional after merge still
* Simple test program to see servo PWM range; logging with semaphores for safe multithreading
* Kalman filters generously provided from various sources for temporary replacement; minimum deployment 30 percent; state machine functionality restored; multithreading logging verified; altimeter broke and replaced
* Stop logging on END state; provide deployment function with AGL instead of ASL altitude
* Various minimal changes; Flash size from 1MB to 8MB; M1939 to M2500T burn time; pin assignments for new PCB; External Status LED to Internal Status LED
---------
Co-authored-by: Jazz Jackson <[email protected]>
Co-authored-by: Cian Capacci <[email protected]>
Co-authored-by: Gregory Wainer <[email protected]>
Diffstat (limited to 'src/AltEst')
| -rw-r--r-- | src/AltEst/algebra.cpp | 292 | ||||
| -rw-r--r-- | src/AltEst/algebra.h | 96 | ||||
| -rw-r--r-- | src/AltEst/altitude.cpp | 58 | ||||
| -rw-r--r-- | src/AltEst/altitude.h | 55 | ||||
| -rw-r--r-- | src/AltEst/filters.cpp | 202 | ||||
| -rw-r--r-- | src/AltEst/filters.h | 65 |
6 files changed, 768 insertions, 0 deletions
diff --git a/src/AltEst/algebra.cpp b/src/AltEst/algebra.cpp new file mode 100644 index 0000000..653c3b9 --- /dev/null +++ b/src/AltEst/algebra.cpp @@ -0,0 +1,292 @@ +/* + algebra.cpp: This file contains a number of utilities useful for handling + 3D vectors + + This work is an adaptation from vvector.h, written by Linas Vepstras. The + original code can be found at: + + https://github.com/markkilgard/glut/blob/master/lib/gle/vvector.h + + HISTORY: + Written by Linas Vepstas, August 1991 + Added 2D code, March 1993 + Added Outer products, C++ proofed, Linas Vepstas October 1993 + Adapted for altitude estimation tasks by Juan Gallostra June 2018 +*/ + +//#include <cmath> +#include <stdio.h> + +#include "algebra.h" + +// Copy 3D vector +void copyVector(float b[3],float a[3]) +{ + b[0] = a[0]; + b[1] = a[1]; + b[2] = a[2]; +} + + +// Vector difference +void subtractVectors(float v21[3], float v2[3], float v1[3]) +{ + v21[0] = v2[0] - v1[0]; + v21[1] = v2[1] - v1[1]; + v21[2] = v2[2] - v1[2]; +} + +// Vector sum +void sumVectors(float v21[3], float v2[3], float v1[3]) +{ + v21[0] = v2[0] + v1[0]; + v21[1] = v2[1] + v1[1]; + v21[2] = v2[2] + v1[2]; +} + +// scalar times vector +void scaleVector(float c[3],float a, float b[3]) +{ + (c)[0] = a*b[0]; + (c)[1] = a*b[1]; + (c)[2] = a*b[2]; +} + +// accumulate scaled vector +void accumulateScaledVector(float c[3], float a, float b[3]) +{ + (c)[0] += a*b[0]; + (c)[1] += a*b[1]; + (c)[2] += a*b[2]; +} + +// Vector dot product +void dotProductVectors(float * c, float a[3], float b[3]) +{ + *c = a[0]*b[0] + a[1]*b[1] + a[2]*b[2]; +} + +// Vector length +void vectorLength(float * len, float a[3]) +{ + float tmp; + tmp = a[0]*a[0] + a[1]*a[1]+a[2]*a[2]; + *len = sqrt(tmp); +} + +// Normalize vector +void normalizeVector(float a[3]) +{ + float len; + vectorLength(& len,a); + if (len != 0.0) { + len = 1.0 / len; + a[0] *= len; + a[1] *= len; + a[2] *= len; + } +} + +// 3D Vector cross product yeilding vector +void crossProductVectors(float c[3], float a[3], float b[3]) +{ + c[0] = a[1] * b[2] - a[2] * b[1]; + c[1] = a[2] * b[0] - a[0] * b[2]; + c[2] = a[0] * b[1] - a[1] * b[0]; +} + +// initialize matrix +void identityMatrix3x3(float m[3][3]) +{ + m[0][0] = 1.0; + m[0][1] = 0.0; + m[0][2] = 0.0; + + m[1][0] = 0.0; + m[1][1] = 1.0; + m[1][2] = 0.0; + + m[2][0] = 0.0; + m[2][1] = 0.0; + m[2][2] = 1.0; +} + +// matrix copy +void copyMatrix3x3(float b[3][3], float a[3][3]) +{ + b[0][0] = a[0][0]; + b[0][1] = a[0][1]; + b[0][2] = a[0][2]; + + b[1][0] = a[1][0]; + b[1][1] = a[1][1]; + b[1][2] = a[1][2]; + + b[2][0] = a[2][0]; + b[2][1] = a[2][1]; + b[2][2] = a[2][2]; +} + +// matrix transpose +void transposeMatrix3x3(float b[3][3], float a[3][3]) +{ + b[0][0] = a[0][0]; + b[0][1] = a[1][0]; + b[0][2] = a[2][0]; + + b[1][0] = a[0][1]; + b[1][1] = a[1][1]; + b[1][2] = a[2][1]; + + b[2][0] = a[0][2]; + b[2][1] = a[1][2]; + b[2][2] = a[2][2]; +} + +// multiply matrix by scalar +void scaleMatrix3x3(float b[3][3], float s, float a[3][3]) +{ + b[0][0] = (s) * a[0][0]; + b[0][1] = (s) * a[0][1]; + b[0][2] = (s) * a[0][2]; + + b[1][0] = (s) * a[1][0]; + b[1][1] = (s) * a[1][1]; + b[1][2] = (s) * a[1][2]; + + b[2][0] = (s) * a[2][0]; + b[2][1] = (s) * a[2][1]; + b[2][2] = (s) * a[2][2]; +} + +// multiply matrix by scalar and add result to another matrix +void scaleAndAccumulateMatrix3x3(float b[3][3], float s, float a[3][3]) +{ + b[0][0] += s * a[0][0]; + b[0][1] += s * a[0][1]; + b[0][2] += s * a[0][2]; + + b[1][0] += s * a[1][0]; + b[1][1] += s * a[1][1]; + b[1][2] += s * a[1][2]; + + b[2][0] += s * a[2][0]; + b[2][1] += s * a[2][1]; + b[2][2] += s * a[2][2]; +} + +// matrix product +// c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y] +void matrixProduct3x3(float c[3][3], float a[3][3], float b[3][3]) +{ + c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]+a[0][2]*b[2][0]; + c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]+a[0][2]*b[2][1]; + c[0][2] = a[0][0]*b[0][2]+a[0][1]*b[1][2]+a[0][2]*b[2][2]; + + c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]+a[1][2]*b[2][0]; + c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]+a[1][2]*b[2][1]; + c[1][2] = a[1][0]*b[0][2]+a[1][1]*b[1][2]+a[1][2]*b[2][2]; + + c[2][0] = a[2][0]*b[0][0]+a[2][1]*b[1][0]+a[2][2]*b[2][0]; + c[2][1] = a[2][0]*b[0][1]+a[2][1]*b[1][1]+a[2][2]*b[2][1]; + c[2][2] = a[2][0]*b[0][2]+a[2][1]*b[1][2]+a[2][2]*b[2][2]; +} + +// matrix times vector +void matrixDotVector3x3(float p[3], float m[3][3], float v[3]) +{ + p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2]; + p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2]; + p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2]; +} + +// determinant of matrix +// Computes determinant of matrix m, returning d +void determinant3x3(float * d, float m[3][3]) +{ + *d = m[0][0] * (m[1][1]*m[2][2] - m[1][2] * m[2][1]); + *d -= m[0][1] * (m[1][0]*m[2][2] - m[1][2] * m[2][0]); + *d += m[0][2] * (m[1][0]*m[2][1] - m[1][1] * m[2][0]); +} + +// adjoint of matrix +// Computes adjoint of matrix m, returning a +// (Note that adjoint is just the transpose of the cofactor matrix) +void adjoint3x3(float a[3][3], float m[3][3]) +{ + a[0][0] = m[1][1]*m[2][2] - m[1][2]*m[2][1]; + a[1][0] = - (m[1][0]*m[2][2] - m[2][0]*m[1][2]); + a[2][0] = m[1][0]*m[2][1] - m[1][1]*m[2][0]; + a[0][1] = - (m[0][1]*m[2][2] - m[0][2]*m[2][1]); + a[1][1] = m[0][0]*m[2][2] - m[0][2]*m[2][0]; + a[2][1] = - (m[0][0]*m[2][1] - m[0][1]*m[2][0]); + a[0][2] = m[0][1]*m[1][2] - m[0][2]*m[1][1]; + a[1][2] = - (m[0][0]*m[1][2] - m[0][2]*m[1][0]); + a[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0]; +} + +// compute adjoint of matrix and scale +// Computes adjoint of matrix m, scales it by s, returning a +void scaleAdjoint3x3(float a[3][3], float s, float m[3][3]) +{ + a[0][0] = (s) * (m[1][1] * m[2][2] - m[1][2] * m[2][1]); + a[1][0] = (s) * (m[1][2] * m[2][0] - m[1][0] * m[2][2]); + a[2][0] = (s) * (m[1][0] * m[2][1] - m[1][1] * m[2][0]); + + a[0][1] = (s) * (m[0][2] * m[2][1] - m[0][1] * m[2][2]); + a[1][1] = (s) * (m[0][0] * m[2][2] - m[0][2] * m[2][0]); + a[2][1] = (s) * (m[0][1] * m[2][0] - m[0][0] * m[2][1]); + + a[0][2] = (s) * (m[0][1] * m[1][2] - m[0][2] * m[1][1]); + a[1][2] = (s) * (m[0][2] * m[1][0] - m[0][0] * m[1][2]); + a[2][2] = (s) * (m[0][0] * m[1][1] - m[0][1] * m[1][0]); +} + +// inverse of matrix +// Compute inverse of matrix a, returning determinant m and +// inverse b +void invert3x3(float b[3][3], float a[3][3]) +{ + float tmp; + determinant3x3(& tmp, a); + tmp = 1.0 / (tmp); + scaleAdjoint3x3(b, tmp, a); +} + +// skew matrix from vector +void skew(float a[3][3], float v[3]) +{ + a[0][1] = -v[2]; + a[0][2] = v[1]; + a[1][2] = -v[0]; + a[1][0] = v[2]; + a[2][0] = -v[1]; + a[2][1] = v[0]; + // set diagonal to 0 + a[0][0] = 0.0; + a[1][1] = 0.0; + a[2][2] = 0.0; +} + +void printMatrix3X3(float mmm[3][3]) +{ + int i,j; + printf ("matrix mmm is \n"); + if (mmm == NULL) { + printf (" Null \n"); + } else { + for (i=0; i<3; i++) { + for (j=0; j<3; j++) { + printf ("%f ", mmm[i][j]); + } + printf (" \n"); + } + } +} + +void vecPrint(float a[3]) +{ + float len; + vectorLength(& len, a); + printf(" a is %f %f %f length of a is %f \n", a[0], a[1], a[2], len); +} diff --git a/src/AltEst/algebra.h b/src/AltEst/algebra.h new file mode 100644 index 0000000..382103e --- /dev/null +++ b/src/AltEst/algebra.h @@ -0,0 +1,96 @@ +/* + algebra.h: This file contains a number of utilities useful for handling + 3D vectors + + This work is an adaptation from vvector.h, written by Linas Vepstras. The + original code can be found at: + + https://github.com/markkilgard/glut/blob/master/lib/gle/vvector.h + + HISTORY: + Written by Linas Vepstas, August 1991 + Added 2D code, March 1993 + Added Outer products, C++ proofed, Linas Vepstas October 1993 + Adapted for altitude estimation tasks by Juan Gallostra June 2018 + Separated .h, .cpp by Simon D. Levy July 2018 +*/ + +#pragma once + +//#include <cmath> +#include <math.h> + +// Copy 3D vector +void copyVector(float b[3],float a[3]); + + +// Vector difference +void subtractVectors(float v21[3], float v2[3], float v1[3]); + +// Vector sum +void sumVectors(float v21[3], float v2[3], float v1[3]); + +// scalar times vector +void scaleVector(float c[3],float a, float b[3]); + +// accumulate scaled vector +void accumulateScaledVector(float c[3], float a, float b[3]); + +// Vector dot product +void dotProductVectors(float * c, float a[3], float b[3]); + +// Vector length +void vectorLength(float * len, float a[3]); + +// Normalize vector +void normalizeVector(float a[3]); + +// 3D Vector cross product yeilding vector +void crossProductVectors(float c[3], float a[3], float b[3]); + +// initialize matrix +void identityMatrix3x3(float m[3][3]); + +// matrix copy +void copyMatrix3x3(float b[3][3], float a[3][3]); + +// matrix transpose +void transposeMatrix3x3(float b[3][3], float a[3][3]); + +// multiply matrix by scalar +void scaleMatrix3x3(float b[3][3], float s, float a[3][3]); + +// multiply matrix by scalar and add result to another matrix +void scaleAndAccumulateMatrix3x3(float b[3][3], float s, float a[3][3]); + +// matrix product +// c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y] +void matrixProduct3x3(float c[3][3], float a[3][3], float b[3][3]); + +// matrix times vector +void matrixDotVector3x3(float p[3], float m[3][3], float v[3]); + +// determinant of matrix +// Computes determinant of matrix m, returning d +void determinant3x3(float * d, float m[3][3]); + +// adjoint of matrix +// Computes adjoint of matrix m, returning a +// (Note that adjoint is just the transpose of the cofactor matrix); +void adjoint3x3(float a[3][3], float m[3][3]); + +// compute adjoint of matrix and scale +// Computes adjoint of matrix m, scales it by s, returning a +void scaleAdjoint3x3(float a[3][3], float s, float m[3][3]); + +// inverse of matrix +// Compute inverse of matrix a, returning determinant m and +// inverse b +void invert3x3(float b[3][3], float a[3][3]); + +// skew matrix from vector +void skew(float a[3][3], float v[3]); + +void printMatrix3X3(float mmm[3][3]); + +void vecPrint(float a[3]); diff --git a/src/AltEst/altitude.cpp b/src/AltEst/altitude.cpp new file mode 100644 index 0000000..8838b36 --- /dev/null +++ b/src/AltEst/altitude.cpp @@ -0,0 +1,58 @@ +/* + altitude.cpp: Altitude estimation via barometer/accelerometer fusion +*/ + +#include "filters.h" +#include "algebra.h" +#include "altitude.h" + +AltitudeEstimator::AltitudeEstimator(float sigmaAccel, float sigmaGyro, float sigmaBaro, + float ca, float accelThreshold) +:kalman(ca, sigmaGyro, sigmaAccel), complementary(sigmaAccel, sigmaBaro, accelThreshold) +{ + this->sigmaAccel = sigmaAccel; + this->sigmaGyro = sigmaGyro; + this->sigmaBaro = sigmaBaro; + this->ca = ca; + this->accelThreshold = accelThreshold; +} + +void AltitudeEstimator::estimate(float accel[3], float gyro[3], float baroHeight, uint32_t timestamp) +{ + float deltat = (float)(timestamp-previousTime)/1000000.0f; + float verticalAccel = kalman.estimate(pastGyro, + pastAccel, + deltat); + complementary.estimate(& estimatedVelocity, + & estimatedAltitude, + baroHeight, + pastAltitude, + pastVerticalVelocity, + pastVerticalAccel, + deltat); + // update values for next iteration + copyVector(pastGyro, gyro); + copyVector(pastAccel, accel); + pastAltitude = estimatedAltitude; + pastVerticalVelocity = estimatedVelocity; + pastVerticalAccel = verticalAccel; + previousTime = timestamp; +} + +float AltitudeEstimator::getAltitude() +{ + // return the last estimated altitude + return estimatedAltitude; +} + +float AltitudeEstimator::getVerticalVelocity() +{ + // return the last estimated vertical velocity + return estimatedVelocity; +} + +float AltitudeEstimator::getVerticalAcceleration() +{ + // return the last estimated vertical acceleration + return pastVerticalAccel; +} diff --git a/src/AltEst/altitude.h b/src/AltEst/altitude.h new file mode 100644 index 0000000..1ca6cb0 --- /dev/null +++ b/src/AltEst/altitude.h @@ -0,0 +1,55 @@ +/* + altitude.h: Altitude estimation via barometer/accelerometer fusion +*/ + +# pragma once + +#include "filters.h" +#include "algebra.h" +#include "pico/time.h" +#include "pico/types.h" + +class AltitudeEstimator { + + private: + // required parameters for the filters used for the estimations + // sensor's standard deviations + float sigmaAccel; + float sigmaGyro; + float sigmaBaro; + // Acceleration markov chain model state transition constant + float ca; + // Zero-velocity update acceleration threshold + float accelThreshold; + // gravity + float g = 9.81; + // For computing the sampling period + absolute_time_t prevTime = get_absolute_time(); + uint32_t previousTime = to_us_since_boot(prevTime); + // required filters for altitude and vertical velocity estimation + KalmanFilter kalman; + ComplementaryFilter complementary; + // Estimated past vertical acceleration + float pastVerticalAccel = 0; + float pastVerticalVelocity = 0; + float pastAltitude = 0; + float pastGyro[3] = {0, 0, 0}; + float pastAccel[3] = {0, 0, 0}; + // estimated altitude and vertical velocity + float estimatedAltitude = 0; + float estimatedVelocity = 0; + + public: + + AltitudeEstimator(float sigmaAccel, float sigmaGyro, float sigmaBaro, + float ca, float accelThreshold); + + void estimate(float accel[3], float gyro[3], float baroHeight, uint32_t timestamp); + + float getAltitude(); + + float getVerticalVelocity(); + + float getVerticalAcceleration(); + +}; // class AltitudeEstimator diff --git a/src/AltEst/filters.cpp b/src/AltEst/filters.cpp new file mode 100644 index 0000000..7902065 --- /dev/null +++ b/src/AltEst/filters.cpp @@ -0,0 +1,202 @@ +/* + filters.cpp: Filter class implementations + */ + +//#include <cmath> +#include <stdlib.h> // XXX eventually use fabs() instead of abs() ? + +#include "filters.h" + +void KalmanFilter::getPredictionCovariance(float covariance[3][3], float previousState[3], float deltat) +{ + // required matrices for the operations + float sigma[3][3]; + float identity[3][3]; + identityMatrix3x3(identity); + float skewMatrix[3][3]; + skew(skewMatrix, previousState); + float tmp[3][3]; + // Compute the prediction covariance matrix + scaleMatrix3x3(sigma, pow(sigmaGyro, 2), identity); + matrixProduct3x3(tmp, skewMatrix, sigma); + matrixProduct3x3(covariance, tmp, skewMatrix); + scaleMatrix3x3(covariance, -pow(deltat, 2), covariance); +} + +void KalmanFilter::getMeasurementCovariance(float covariance[3][3]) +{ + // required matrices for the operations + float sigma[3][3]; + float identity[3][3]; + identityMatrix3x3(identity); + float norm; + // Compute measurement covariance + scaleMatrix3x3(sigma, pow(sigmaAccel, 2), identity); + vectorLength(& norm, previousAccelSensor); + scaleAndAccumulateMatrix3x3(sigma, (1.0/3.0)*pow(ca, 2)*norm, identity); + copyMatrix3x3(covariance, sigma); +} + +void KalmanFilter::predictState(float predictedState[3], float gyro[3], float deltat) +{ + // helper matrices + float identity[3][3]; + identityMatrix3x3(identity); + float skewFromGyro[3][3]; + skew(skewFromGyro, gyro); + // Predict state + scaleAndAccumulateMatrix3x3(identity, -deltat, skewFromGyro); + matrixDotVector3x3(predictedState, identity, currentState); + normalizeVector(predictedState); +} + +void KalmanFilter::predictErrorCovariance(float covariance[3][3], float gyro[3], float deltat) +{ + // required matrices + float Q[3][3]; + float identity[3][3]; + identityMatrix3x3(identity); + float skewFromGyro[3][3]; + skew(skewFromGyro, gyro); + float tmp[3][3]; + float tmpTransposed[3][3]; + float tmp2[3][3]; + // predict error covariance + getPredictionCovariance(Q, currentState, deltat); + scaleAndAccumulateMatrix3x3(identity, -deltat, skewFromGyro); + copyMatrix3x3(tmp, identity); + transposeMatrix3x3(tmpTransposed, tmp); + matrixProduct3x3(tmp2, tmp, currErrorCovariance); + matrixProduct3x3(covariance, tmp2, tmpTransposed); + scaleAndAccumulateMatrix3x3(covariance, 1.0, Q); +} + +void KalmanFilter::updateGain(float gain[3][3], float errorCovariance[3][3]) +{ + // required matrices + float R[3][3]; + float HTransposed[3][3]; + transposeMatrix3x3(HTransposed, H); + float tmp[3][3]; + float tmp2[3][3]; + float tmp2Inverse[3][3]; + // update kalman gain + // P.dot(H.T).dot(inv(H.dot(P).dot(H.T) + R)) + getMeasurementCovariance(R); + matrixProduct3x3(tmp, errorCovariance, HTransposed); + matrixProduct3x3(tmp2, H, tmp); + scaleAndAccumulateMatrix3x3(tmp2, 1.0, R); + invert3x3(tmp2Inverse, tmp2); + matrixProduct3x3(gain, tmp, tmp2Inverse); +} + +void KalmanFilter::updateState(float updatedState[3], float predictedState[3], float gain[3][3], float accel[3]) +{ + // required matrices + float tmp[3]; + float tmp2[3]; + float measurement[3]; + scaleVector(tmp, ca, previousAccelSensor); + subtractVectors(measurement, accel, tmp); + // update state with measurement + // predicted_state + K.dot(measurement - H.dot(predicted_state)) + matrixDotVector3x3(tmp, H, predictedState); + subtractVectors(tmp, measurement, tmp); + matrixDotVector3x3(tmp2, gain, tmp); + sumVectors(updatedState, predictedState, tmp2); + normalizeVector(updatedState); +} + +void KalmanFilter::updateErrorCovariance(float covariance[3][3], float errorCovariance[3][3], float gain[3][3]) +{ + // required matrices + float identity[3][3]; + identityMatrix3x3(identity); + float tmp[3][3]; + float tmp2[3][3]; + // update error covariance with measurement + matrixProduct3x3(tmp, gain, H); + matrixProduct3x3(tmp2, tmp, errorCovariance); + scaleAndAccumulateMatrix3x3(identity, -1.0, tmp2); + copyMatrix3x3(covariance, tmp2); +} + + +KalmanFilter::KalmanFilter(float ca, float sigmaGyro, float sigmaAccel) +{ + this->ca = ca; + this->sigmaGyro = sigmaGyro; + this->sigmaAccel = sigmaAccel; +} + +float KalmanFilter::estimate(float gyro[3], float accel[3], float deltat) +{ + float predictedState[3]; + float updatedState[3]; + float errorCovariance[3][3]; + float updatedErrorCovariance[3][3]; + float gain[3][3]; + float accelSensor[3]; + float tmp[3]; + float accelEarth; + scaleVector(accel, 9.81, accel); // Scale accel readings since they are measured in gs + // perform estimation + // predictions + predictState(predictedState, gyro, deltat); + predictErrorCovariance(errorCovariance, gyro, deltat); + // updates + updateGain(gain, errorCovariance); + updateState(updatedState, predictedState, gain, accel); + updateErrorCovariance(updatedErrorCovariance, errorCovariance, gain); + // Store required values for next iteration + copyVector(currentState, updatedState); + copyMatrix3x3(currErrorCovariance, updatedErrorCovariance); + // return vertical acceleration estimate + scaleVector(tmp, 9.81, updatedState); + subtractVectors(accelSensor, accel, tmp); + copyVector(previousAccelSensor, accelSensor); + dotProductVectors(& accelEarth, accelSensor, updatedState); + return accelEarth; +} + + +float ComplementaryFilter::ApplyZUPT(float accel, float vel) +{ + // first update ZUPT array with latest estimation + ZUPT[ZUPTIdx] = accel; + // and move index to next slot + uint8_t nextIndex = (ZUPTIdx + 1) % ZUPT_SIZE; + ZUPTIdx = nextIndex; + // Apply Zero-velocity update + for (uint8_t k = 0; k < ZUPT_SIZE; ++k) { + if (abs(ZUPT[k]) > accelThreshold) return vel; + } + return 0.0; +} + + +ComplementaryFilter::ComplementaryFilter(float sigmaAccel, float sigmaBaro, float accelThreshold) +{ + // Compute the filter gain + gain[0] = sqrt(2 * sigmaAccel / sigmaBaro); + gain[1] = sigmaAccel / sigmaBaro; + // If acceleration is below the threshold the ZUPT counter + // will be increased + this->accelThreshold = accelThreshold; + // initialize zero-velocity update + ZUPTIdx = 0; + for (uint8_t k = 0; k < ZUPT_SIZE; ++k) { + ZUPT[k] = 0; + } +} + +void ComplementaryFilter::estimate(float * velocity, float * altitude, float baroAltitude, + float pastAltitude, float pastVelocity, float accel, float deltat) +{ + // Apply complementary filter + *altitude = pastAltitude + deltat*(pastVelocity + (gain[0] + gain[1]*deltat/2)*(baroAltitude-pastAltitude))+ + accel*pow(deltat, 2)/2; + *velocity = pastVelocity + deltat*(gain[1]*(baroAltitude-pastAltitude) + accel); + // Compute zero-velocity update + *velocity = ApplyZUPT(accel, *velocity); +} diff --git a/src/AltEst/filters.h b/src/AltEst/filters.h new file mode 100644 index 0000000..2e316a3 --- /dev/null +++ b/src/AltEst/filters.h @@ -0,0 +1,65 @@ +/* + filters.h: Filter class declarations + */ + +#pragma once + +//#include <cmath> +#include <math.h> +#include <stdint.h> + +#include "algebra.h" + +class KalmanFilter { + private: + float currentState[3] = {0, 0, 1}; + float currErrorCovariance[3][3] = {{100, 0, 0},{0, 100, 0},{0, 0, 100}}; + float H[3][3] = {{9.81, 0, 0}, {0, 9.81, 0}, {0, 0, 9.81}}; + float previousAccelSensor[3] = {0, 0, 0}; + float ca; + float sigmaGyro; + float sigmaAccel; + + void getPredictionCovariance(float covariance[3][3], float previousState[3], float deltat); + + void getMeasurementCovariance(float covariance[3][3]); + + void predictState(float predictedState[3], float gyro[3], float deltat); + + void predictErrorCovariance(float covariance[3][3], float gyro[3], float deltat); + + void updateGain(float gain[3][3], float errorCovariance[3][3]); + + void updateState(float updatedState[3], float predictedState[3], float gain[3][3], float accel[3]); + + void updateErrorCovariance(float covariance[3][3], float errorCovariance[3][3], float gain[3][3]); + + public: + + KalmanFilter(float ca, float sigmaGyro, float sigmaAccel); + + float estimate(float gyro[3], float accel[3], float deltat); + +}; // Class KalmanFilter + +class ComplementaryFilter { + + private: + + // filter gain + float gain[2]; + // Zero-velocity update + float accelThreshold; + static const uint8_t ZUPT_SIZE = 12; + uint8_t ZUPTIdx; + float ZUPT[ZUPT_SIZE]; + + float ApplyZUPT(float accel, float vel); + + public: + + ComplementaryFilter(float sigmaAccel, float sigmaBaro, float accelThreshold); + + void estimate(float * velocity, float * altitude, float baroAltitude, + float pastAltitude, float pastVelocity, float accel, float deltat); +}; // Class ComplementaryFilter |
