1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
/*
algebra.cpp: This file contains a number of utilities useful for handling
3D vectors
This work is an adaptation from vvector.h, written by Linas Vepstras. The
original code can be found at:
https://github.com/markkilgard/glut/blob/master/lib/gle/vvector.h
HISTORY:
Written by Linas Vepstas, August 1991
Added 2D code, March 1993
Added Outer products, C++ proofed, Linas Vepstas October 1993
Adapted for altitude estimation tasks by Juan Gallostra June 2018
*/
//#include <cmath>
#include <stdio.h>
#include "algebra.h"
// Copy 3D vector
void copyVector(float b[3],float a[3])
{
b[0] = a[0];
b[1] = a[1];
b[2] = a[2];
}
// Vector difference
void subtractVectors(float v21[3], float v2[3], float v1[3])
{
v21[0] = v2[0] - v1[0];
v21[1] = v2[1] - v1[1];
v21[2] = v2[2] - v1[2];
}
// Vector sum
void sumVectors(float v21[3], float v2[3], float v1[3])
{
v21[0] = v2[0] + v1[0];
v21[1] = v2[1] + v1[1];
v21[2] = v2[2] + v1[2];
}
// scalar times vector
void scaleVector(float c[3],float a, float b[3])
{
(c)[0] = a*b[0];
(c)[1] = a*b[1];
(c)[2] = a*b[2];
}
// accumulate scaled vector
void accumulateScaledVector(float c[3], float a, float b[3])
{
(c)[0] += a*b[0];
(c)[1] += a*b[1];
(c)[2] += a*b[2];
}
// Vector dot product
void dotProductVectors(float * c, float a[3], float b[3])
{
*c = a[0]*b[0] + a[1]*b[1] + a[2]*b[2];
}
// Vector length
void vectorLength(float * len, float a[3])
{
float tmp;
tmp = a[0]*a[0] + a[1]*a[1]+a[2]*a[2];
*len = sqrt(tmp);
}
// Normalize vector
void normalizeVector(float a[3])
{
float len;
vectorLength(& len,a);
if (len != 0.0) {
len = 1.0 / len;
a[0] *= len;
a[1] *= len;
a[2] *= len;
}
}
// 3D Vector cross product yeilding vector
void crossProductVectors(float c[3], float a[3], float b[3])
{
c[0] = a[1] * b[2] - a[2] * b[1];
c[1] = a[2] * b[0] - a[0] * b[2];
c[2] = a[0] * b[1] - a[1] * b[0];
}
// initialize matrix
void identityMatrix3x3(float m[3][3])
{
m[0][0] = 1.0;
m[0][1] = 0.0;
m[0][2] = 0.0;
m[1][0] = 0.0;
m[1][1] = 1.0;
m[1][2] = 0.0;
m[2][0] = 0.0;
m[2][1] = 0.0;
m[2][2] = 1.0;
}
// matrix copy
void copyMatrix3x3(float b[3][3], float a[3][3])
{
b[0][0] = a[0][0];
b[0][1] = a[0][1];
b[0][2] = a[0][2];
b[1][0] = a[1][0];
b[1][1] = a[1][1];
b[1][2] = a[1][2];
b[2][0] = a[2][0];
b[2][1] = a[2][1];
b[2][2] = a[2][2];
}
// matrix transpose
void transposeMatrix3x3(float b[3][3], float a[3][3])
{
b[0][0] = a[0][0];
b[0][1] = a[1][0];
b[0][2] = a[2][0];
b[1][0] = a[0][1];
b[1][1] = a[1][1];
b[1][2] = a[2][1];
b[2][0] = a[0][2];
b[2][1] = a[1][2];
b[2][2] = a[2][2];
}
// multiply matrix by scalar
void scaleMatrix3x3(float b[3][3], float s, float a[3][3])
{
b[0][0] = (s) * a[0][0];
b[0][1] = (s) * a[0][1];
b[0][2] = (s) * a[0][2];
b[1][0] = (s) * a[1][0];
b[1][1] = (s) * a[1][1];
b[1][2] = (s) * a[1][2];
b[2][0] = (s) * a[2][0];
b[2][1] = (s) * a[2][1];
b[2][2] = (s) * a[2][2];
}
// multiply matrix by scalar and add result to another matrix
void scaleAndAccumulateMatrix3x3(float b[3][3], float s, float a[3][3])
{
b[0][0] += s * a[0][0];
b[0][1] += s * a[0][1];
b[0][2] += s * a[0][2];
b[1][0] += s * a[1][0];
b[1][1] += s * a[1][1];
b[1][2] += s * a[1][2];
b[2][0] += s * a[2][0];
b[2][1] += s * a[2][1];
b[2][2] += s * a[2][2];
}
// matrix product
// c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y]
void matrixProduct3x3(float c[3][3], float a[3][3], float b[3][3])
{
c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]+a[0][2]*b[2][0];
c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]+a[0][2]*b[2][1];
c[0][2] = a[0][0]*b[0][2]+a[0][1]*b[1][2]+a[0][2]*b[2][2];
c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]+a[1][2]*b[2][0];
c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]+a[1][2]*b[2][1];
c[1][2] = a[1][0]*b[0][2]+a[1][1]*b[1][2]+a[1][2]*b[2][2];
c[2][0] = a[2][0]*b[0][0]+a[2][1]*b[1][0]+a[2][2]*b[2][0];
c[2][1] = a[2][0]*b[0][1]+a[2][1]*b[1][1]+a[2][2]*b[2][1];
c[2][2] = a[2][0]*b[0][2]+a[2][1]*b[1][2]+a[2][2]*b[2][2];
}
// matrix times vector
void matrixDotVector3x3(float p[3], float m[3][3], float v[3])
{
p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2];
p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2];
p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2];
}
// determinant of matrix
// Computes determinant of matrix m, returning d
void determinant3x3(float * d, float m[3][3])
{
*d = m[0][0] * (m[1][1]*m[2][2] - m[1][2] * m[2][1]);
*d -= m[0][1] * (m[1][0]*m[2][2] - m[1][2] * m[2][0]);
*d += m[0][2] * (m[1][0]*m[2][1] - m[1][1] * m[2][0]);
}
// adjoint of matrix
// Computes adjoint of matrix m, returning a
// (Note that adjoint is just the transpose of the cofactor matrix)
void adjoint3x3(float a[3][3], float m[3][3])
{
a[0][0] = m[1][1]*m[2][2] - m[1][2]*m[2][1];
a[1][0] = - (m[1][0]*m[2][2] - m[2][0]*m[1][2]);
a[2][0] = m[1][0]*m[2][1] - m[1][1]*m[2][0];
a[0][1] = - (m[0][1]*m[2][2] - m[0][2]*m[2][1]);
a[1][1] = m[0][0]*m[2][2] - m[0][2]*m[2][0];
a[2][1] = - (m[0][0]*m[2][1] - m[0][1]*m[2][0]);
a[0][2] = m[0][1]*m[1][2] - m[0][2]*m[1][1];
a[1][2] = - (m[0][0]*m[1][2] - m[0][2]*m[1][0]);
a[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0];
}
// compute adjoint of matrix and scale
// Computes adjoint of matrix m, scales it by s, returning a
void scaleAdjoint3x3(float a[3][3], float s, float m[3][3])
{
a[0][0] = (s) * (m[1][1] * m[2][2] - m[1][2] * m[2][1]);
a[1][0] = (s) * (m[1][2] * m[2][0] - m[1][0] * m[2][2]);
a[2][0] = (s) * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
a[0][1] = (s) * (m[0][2] * m[2][1] - m[0][1] * m[2][2]);
a[1][1] = (s) * (m[0][0] * m[2][2] - m[0][2] * m[2][0]);
a[2][1] = (s) * (m[0][1] * m[2][0] - m[0][0] * m[2][1]);
a[0][2] = (s) * (m[0][1] * m[1][2] - m[0][2] * m[1][1]);
a[1][2] = (s) * (m[0][2] * m[1][0] - m[0][0] * m[1][2]);
a[2][2] = (s) * (m[0][0] * m[1][1] - m[0][1] * m[1][0]);
}
// inverse of matrix
// Compute inverse of matrix a, returning determinant m and
// inverse b
void invert3x3(float b[3][3], float a[3][3])
{
float tmp;
determinant3x3(& tmp, a);
tmp = 1.0 / (tmp);
scaleAdjoint3x3(b, tmp, a);
}
// skew matrix from vector
void skew(float a[3][3], float v[3])
{
a[0][1] = -v[2];
a[0][2] = v[1];
a[1][2] = -v[0];
a[1][0] = v[2];
a[2][0] = -v[1];
a[2][1] = v[0];
// set diagonal to 0
a[0][0] = 0.0;
a[1][1] = 0.0;
a[2][2] = 0.0;
}
void printMatrix3X3(float mmm[3][3])
{
int i,j;
printf ("matrix mmm is \n");
if (mmm == NULL) {
printf (" Null \n");
} else {
for (i=0; i<3; i++) {
for (j=0; j<3; j++) {
printf ("%f ", mmm[i][j]);
}
printf (" \n");
}
}
}
void vecPrint(float a[3])
{
float len;
vectorLength(& len, a);
printf(" a is %f %f %f length of a is %f \n", a[0], a[1], a[2], len);
}
|