1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
|
#include <iostream>
#include <gtest/gtest.h>
#include <Eigen/Dense>
#include "../include/kalmanfilter.hpp"
using namespace Eigen;
class KalmanFilterTest : public ::testing::Test {
protected:
KalmanFilterTest() {
kf = new KalmanFilter(2, 1, 1, 1);
}
//~KalmanFilterTest() {}
KalmanFilter *kf;
};
/**
* @brief Test Setting the initial state x & P
*
* **/
TEST_F(KalmanFilterTest, setInitialState) {
VectorXf state_vec(2);
MatrixXf state_cov(2, 2);
state_vec << 1, 2;
state_cov << 1, 3, 4, 9;
// Success Case
EXPECT_TRUE(kf->setInitialState(state_vec, state_cov));
// Failure Case
VectorXf state_vec2(4);
state_vec2 << 1, 2, 3, 4;
EXPECT_FALSE(kf->setInitialState(state_vec2, state_cov));
}
/**
* @brief Test a single iteration of the Kalman Filter
*
* **/
TEST_F(KalmanFilterTest, run) {
VectorXf control(1);
VectorXf measurement(1);
control << 1;
measurement << 1;
VectorXf res(1);
res = kf->run(control, measurement, 1);
EXPECT_NEAR(0.5454, res(0), 0.0001);
EXPECT_NEAR(1, res(1), 0.0001);
}
/**
* @brief Test run() when the time step value is changed between function calls.
*
*/
TEST_F(KalmanFilterTest, runChange) {
VectorXf control(1);
VectorXf measurement(1);
control << 1;
measurement << 1;
VectorXf res(1);
res = kf->run(control, measurement, 0.1);
EXPECT_NEAR(0.09545, res(0), 0.00001);
EXPECT_NEAR(0.1, res(1), 0.1);
res = kf->run(control, measurement, 0.15);
EXPECT_NEAR(0.2761, res(0), 0.0001);
EXPECT_NEAR(0.3585, res(1), 0.0001);
}
|