1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
|
#include "imu.hpp"
imu::imu(i2c_inst_t* inst, uint8_t addr, uint8_t id, imu_opmode_t mode) {
this->inst = inst;
this->addr = addr;
this->id = id;
this->mode = mode;
}
void imu::reset() {
this->buffer[0] = SYS_TRIGGER;
this->buffer[1] = 0x20; // Reset system
i2c_write_blocking(this->inst, this->addr, buffer, 2, true);
sleep_ms(1000); // Wait 650ms for the sensor to reset
}
void imu::initialize() {
sleep_ms(1000); // Wait 650ms for the sensor to reset
uint8_t chip_id_addr = CHIP_ID;
uint8_t read_id = 0x00;
while (read_id != this->id) {
i2c_write_blocking(this->inst, this->addr, &chip_id_addr, 1, false);
i2c_read_blocking(this->inst, this->addr, &read_id, 1, false);
sleep_ms(100);
}
// Use internal oscillator
this->buffer[0] = SYS_TRIGGER;
this->buffer[1] = 0x40; // Set to use internal oscillator
i2c_write_blocking(this->inst, this->addr, this->buffer, 2, true);
sleep_ms(50);
// Reset all interrupt status bits
this->buffer[0] = SYS_TRIGGER;
this->buffer[1] = 0x01; // Reset interrupt status
i2c_write_blocking(this->inst, this->addr, this->buffer, 2, true);
sleep_ms(50);
// Set to normal power mode
this->buffer[0] = POWER_MODE;
this->buffer[1] = 0x00; // Normal power mode
i2c_write_blocking(this->inst, this->addr, this->buffer, 2, true);
sleep_ms(50);
// Default Axis Config
this->buffer[0] = AXIS_MAP_CONFIG;
this->buffer[1] = 0x24; // P1=Z, P2=Y, P3=X
i2c_write_blocking(this->inst, this->addr, this->buffer, 2, true);
sleep_ms(50);
// Default Axis Sign
this->buffer[0] = AXIS_MAP_SIGN;
this->buffer[1] = 0x00; // P1=Positive, P2=Positive, P3=Positive
i2c_write_blocking(this->inst, this->addr, this->buffer, 2, true);
sleep_ms(50);
// Set units to m/s^2
this->buffer[0] = UNIT_SELECTION;
this->buffer[1] = 0x00; // Windows, Celsius, Degrees, DPS, m/s^2
i2c_write_blocking(this->inst, this->addr, this->buffer, 2, true);
sleep_ms(200);
uint8_t sensor_offsets[19];
sensor_offsets[0] = ACCELERATION_OFFSET_X_LSB;
sensor_offsets[1] = 0x00;
sensor_offsets[2] = 0x00;
sensor_offsets[3] = 0x00;
sensor_offsets[4] = 0x00;
sensor_offsets[5] = 0x00;
sensor_offsets[6] = 0x00;
sensor_offsets[7] = 0x00;
sensor_offsets[8] = 0x00;
sensor_offsets[9] = 0x00;
sensor_offsets[10] = 0x00;
sensor_offsets[11] = 0x00;
sensor_offsets[12] = 0x00;
sensor_offsets[13] = 0x00;
sensor_offsets[14] = 0x00;
sensor_offsets[15] = 0x00;
sensor_offsets[16] = 0x00;
sensor_offsets[17] = 0x00;
sensor_offsets[18] = 0x00;
i2c_write_blocking(this->inst, this->addr, sensor_offsets, 19, true);
sleep_ms(200);
// The default operation mode after power-on is CONFIG
// Set to desired mode
this->buffer[0] = OPERATION_MODE;
this->buffer[1] = this->mode; // NDOF
i2c_write_blocking(this->inst, this->addr, this->buffer, 2, false);
sleep_ms(100);
}
void imu::calibration_status(calibration_status_t* status) {
read_register(CALIBRATION_STATUS, 1, this->buffer);
status->mag = ((this->buffer[0] & 0b00000011) >> 0);
status->accel = ((this->buffer[0] & 0b00001100) >> 2);
status->gyro = ((this->buffer[0] & 0b00110000) >> 4);
status->sys = ((this->buffer[0] & 0b11000000) >> 6);
}
void imu::linear_acceleration(Eigen::Vector3f& vec) {
read_register(LINEAR_ACCELERATION_X_LSB, 6, this->accel_buffer);
int16_t x, y, z;
x = y = z = 0;
x = ((int16_t)this->accel_buffer[0]) | (((int16_t)this->accel_buffer[1]) << 8);
y = ((int16_t)this->accel_buffer[2]) | (((int16_t)this->accel_buffer[3]) << 8);
z = ((int16_t)this->accel_buffer[4]) | (((int16_t)this->accel_buffer[5]) << 8);
vec(0) = ((float)x) / 100.0;
vec(1) = ((float)y) / 100.0;
vec(2) = ((float)z) / 100.0;
}
void imu::quaternion(Eigen::Vector4f& vec) {
read_register(QUATERNION_W_LSB, 8, this->quat_buffer);
int16_t w, x, y, z;
w = x = y = z = 0;
w = ((int16_t)this->quat_buffer[0]) | (((int16_t)this->quat_buffer[1]) << 8);
x = ((int16_t)this->quat_buffer[2]) | (((int16_t)this->quat_buffer[3]) << 8);
y = ((int16_t)this->quat_buffer[4]) | (((int16_t)this->quat_buffer[5]) << 8);
z = ((int16_t)this->quat_buffer[6]) | (((int16_t)this->quat_buffer[7]) << 8);
vec(0) = ((float)w) / 16384.0;
vec(1) = ((float)x) / 16384.0;
vec(2) = ((float)y) / 16384.0;
vec(3) = ((float)z) / 16384.0;
}
void imu::quaternion_euler(Eigen::Vector3f& angles, Eigen::Vector4f& quat) {
// roll (x-axis rotation)
float sinr_cosp = 2 * (quat(0) * quat(1) + quat(2) * quat(3));
float cosr_cosp = 1 - 2 * (quat(1) * quat(1) + quat(2) * quat(2));
angles(0) = Eigen::numext::atan2(sinr_cosp, cosr_cosp);
// pitch (y-axis rotation)
float sinp = Eigen::numext::sqrt(1 + 2 * (quat(0) * quat(2) - quat(1) * quat(3)));
float cosp = Eigen::numext::sqrt(1 - 2 * (quat(0) * quat(2) - quat(1) * quat(3)));
angles(1) = 2 * Eigen::numext::atan2(sinp, cosp) - M_PI / 2;
// yaw (z-axis rotation)
float siny_cosp = 2 * (quat(0) * quat(3) + quat(1) * quat(2));
float cosy_cosp = 1 - 2 * (quat(2) * quat(2) + quat(3) * quat(3));
angles(2) = Eigen::numext::atan2(siny_cosp, cosy_cosp);
}
uint32_t imu::expose_acceleration_buffer(uint8_t** buffer) {
*buffer = this->accel_buffer;
return sizeof(this->accel_buffer);
}
uint32_t imu::expose_quaternion_buffer(uint8_t** buffer) {
*buffer = this->quat_buffer;
return sizeof(this->quat_buffer);
}
void imu::read_register(uint8_t reg, size_t len, uint8_t* buffer) {
i2c_write_blocking(this->inst, this->addr, ®, 1, true);
i2c_read_blocking(this->inst, this->addr, buffer, len, false);
}
|