1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
/*
filters.cpp: Filter class implementations
*/
//#include <cmath>
#include <stdlib.h> // XXX eventually use fabs() instead of abs() ?
#include "filters.h"
void KalmanFilter::getPredictionCovariance(float covariance[3][3], float previousState[3], float deltat)
{
// required matrices for the operations
float sigma[3][3];
float identity[3][3];
identityMatrix3x3(identity);
float skewMatrix[3][3];
skew(skewMatrix, previousState);
float tmp[3][3];
// Compute the prediction covariance matrix
scaleMatrix3x3(sigma, pow(sigmaGyro, 2), identity);
matrixProduct3x3(tmp, skewMatrix, sigma);
matrixProduct3x3(covariance, tmp, skewMatrix);
scaleMatrix3x3(covariance, -pow(deltat, 2), covariance);
}
void KalmanFilter::getMeasurementCovariance(float covariance[3][3])
{
// required matrices for the operations
float sigma[3][3];
float identity[3][3];
identityMatrix3x3(identity);
float norm;
// Compute measurement covariance
scaleMatrix3x3(sigma, pow(sigmaAccel, 2), identity);
vectorLength(& norm, previousAccelSensor);
scaleAndAccumulateMatrix3x3(sigma, (1.0/3.0)*pow(ca, 2)*norm, identity);
copyMatrix3x3(covariance, sigma);
}
void KalmanFilter::predictState(float predictedState[3], float gyro[3], float deltat)
{
// helper matrices
float identity[3][3];
identityMatrix3x3(identity);
float skewFromGyro[3][3];
skew(skewFromGyro, gyro);
// Predict state
scaleAndAccumulateMatrix3x3(identity, -deltat, skewFromGyro);
matrixDotVector3x3(predictedState, identity, currentState);
normalizeVector(predictedState);
}
void KalmanFilter::predictErrorCovariance(float covariance[3][3], float gyro[3], float deltat)
{
// required matrices
float Q[3][3];
float identity[3][3];
identityMatrix3x3(identity);
float skewFromGyro[3][3];
skew(skewFromGyro, gyro);
float tmp[3][3];
float tmpTransposed[3][3];
float tmp2[3][3];
// predict error covariance
getPredictionCovariance(Q, currentState, deltat);
scaleAndAccumulateMatrix3x3(identity, -deltat, skewFromGyro);
copyMatrix3x3(tmp, identity);
transposeMatrix3x3(tmpTransposed, tmp);
matrixProduct3x3(tmp2, tmp, currErrorCovariance);
matrixProduct3x3(covariance, tmp2, tmpTransposed);
scaleAndAccumulateMatrix3x3(covariance, 1.0, Q);
}
void KalmanFilter::updateGain(float gain[3][3], float errorCovariance[3][3])
{
// required matrices
float R[3][3];
float HTransposed[3][3];
transposeMatrix3x3(HTransposed, H);
float tmp[3][3];
float tmp2[3][3];
float tmp2Inverse[3][3];
// update kalman gain
// P.dot(H.T).dot(inv(H.dot(P).dot(H.T) + R))
getMeasurementCovariance(R);
matrixProduct3x3(tmp, errorCovariance, HTransposed);
matrixProduct3x3(tmp2, H, tmp);
scaleAndAccumulateMatrix3x3(tmp2, 1.0, R);
invert3x3(tmp2Inverse, tmp2);
matrixProduct3x3(gain, tmp, tmp2Inverse);
}
void KalmanFilter::updateState(float updatedState[3], float predictedState[3], float gain[3][3], float accel[3])
{
// required matrices
float tmp[3];
float tmp2[3];
float measurement[3];
scaleVector(tmp, ca, previousAccelSensor);
subtractVectors(measurement, accel, tmp);
// update state with measurement
// predicted_state + K.dot(measurement - H.dot(predicted_state))
matrixDotVector3x3(tmp, H, predictedState);
subtractVectors(tmp, measurement, tmp);
matrixDotVector3x3(tmp2, gain, tmp);
sumVectors(updatedState, predictedState, tmp2);
normalizeVector(updatedState);
}
void KalmanFilter::updateErrorCovariance(float covariance[3][3], float errorCovariance[3][3], float gain[3][3])
{
// required matrices
float identity[3][3];
identityMatrix3x3(identity);
float tmp[3][3];
float tmp2[3][3];
// update error covariance with measurement
matrixProduct3x3(tmp, gain, H);
matrixProduct3x3(tmp2, tmp, errorCovariance);
scaleAndAccumulateMatrix3x3(identity, -1.0, tmp2);
copyMatrix3x3(covariance, tmp2);
}
KalmanFilter::KalmanFilter(float ca, float sigmaGyro, float sigmaAccel)
{
this->ca = ca;
this->sigmaGyro = sigmaGyro;
this->sigmaAccel = sigmaAccel;
}
float KalmanFilter::estimate(float gyro[3], float accel[3], float deltat)
{
float predictedState[3];
float updatedState[3];
float errorCovariance[3][3];
float updatedErrorCovariance[3][3];
float gain[3][3];
float accelSensor[3];
float tmp[3];
float accelEarth;
scaleVector(accel, 9.81, accel); // Scale accel readings since they are measured in gs
// perform estimation
// predictions
predictState(predictedState, gyro, deltat);
predictErrorCovariance(errorCovariance, gyro, deltat);
// updates
updateGain(gain, errorCovariance);
updateState(updatedState, predictedState, gain, accel);
updateErrorCovariance(updatedErrorCovariance, errorCovariance, gain);
// Store required values for next iteration
copyVector(currentState, updatedState);
copyMatrix3x3(currErrorCovariance, updatedErrorCovariance);
// return vertical acceleration estimate
scaleVector(tmp, 9.81, updatedState);
subtractVectors(accelSensor, accel, tmp);
copyVector(previousAccelSensor, accelSensor);
dotProductVectors(& accelEarth, accelSensor, updatedState);
return accelEarth;
}
float ComplementaryFilter::ApplyZUPT(float accel, float vel)
{
// first update ZUPT array with latest estimation
ZUPT[ZUPTIdx] = accel;
// and move index to next slot
uint8_t nextIndex = (ZUPTIdx + 1) % ZUPT_SIZE;
ZUPTIdx = nextIndex;
// Apply Zero-velocity update
for (uint8_t k = 0; k < ZUPT_SIZE; ++k) {
if (abs(ZUPT[k]) > accelThreshold) return vel;
}
return 0.0;
}
ComplementaryFilter::ComplementaryFilter(float sigmaAccel, float sigmaBaro, float accelThreshold)
{
// Compute the filter gain
gain[0] = sqrt(2 * sigmaAccel / sigmaBaro);
gain[1] = sigmaAccel / sigmaBaro;
// If acceleration is below the threshold the ZUPT counter
// will be increased
this->accelThreshold = accelThreshold;
// initialize zero-velocity update
ZUPTIdx = 0;
for (uint8_t k = 0; k < ZUPT_SIZE; ++k) {
ZUPT[k] = 0;
}
}
void ComplementaryFilter::estimate(float * velocity, float * altitude, float baroAltitude,
float pastAltitude, float pastVelocity, float accel, float deltat)
{
// Apply complementary filter
*altitude = pastAltitude + deltat*(pastVelocity + (gain[0] + gain[1]*deltat/2)*(baroAltitude-pastAltitude))+
accel*pow(deltat, 2)/2;
*velocity = pastVelocity + deltat*(gain[1]*(baroAltitude-pastAltitude) + accel);
// Compute zero-velocity update
*velocity = ApplyZUPT(accel, *velocity);
}
|