diff options
Diffstat (limited to 'src/AltEst/algebra.cpp')
| -rw-r--r-- | src/AltEst/algebra.cpp | 292 |
1 files changed, 0 insertions, 292 deletions
diff --git a/src/AltEst/algebra.cpp b/src/AltEst/algebra.cpp deleted file mode 100644 index 653c3b9..0000000 --- a/src/AltEst/algebra.cpp +++ /dev/null @@ -1,292 +0,0 @@ -/* - algebra.cpp: This file contains a number of utilities useful for handling - 3D vectors - - This work is an adaptation from vvector.h, written by Linas Vepstras. The - original code can be found at: - - https://github.com/markkilgard/glut/blob/master/lib/gle/vvector.h - - HISTORY: - Written by Linas Vepstas, August 1991 - Added 2D code, March 1993 - Added Outer products, C++ proofed, Linas Vepstas October 1993 - Adapted for altitude estimation tasks by Juan Gallostra June 2018 -*/ - -//#include <cmath> -#include <stdio.h> - -#include "algebra.h" - -// Copy 3D vector -void copyVector(float b[3],float a[3]) -{ - b[0] = a[0]; - b[1] = a[1]; - b[2] = a[2]; -} - - -// Vector difference -void subtractVectors(float v21[3], float v2[3], float v1[3]) -{ - v21[0] = v2[0] - v1[0]; - v21[1] = v2[1] - v1[1]; - v21[2] = v2[2] - v1[2]; -} - -// Vector sum -void sumVectors(float v21[3], float v2[3], float v1[3]) -{ - v21[0] = v2[0] + v1[0]; - v21[1] = v2[1] + v1[1]; - v21[2] = v2[2] + v1[2]; -} - -// scalar times vector -void scaleVector(float c[3],float a, float b[3]) -{ - (c)[0] = a*b[0]; - (c)[1] = a*b[1]; - (c)[2] = a*b[2]; -} - -// accumulate scaled vector -void accumulateScaledVector(float c[3], float a, float b[3]) -{ - (c)[0] += a*b[0]; - (c)[1] += a*b[1]; - (c)[2] += a*b[2]; -} - -// Vector dot product -void dotProductVectors(float * c, float a[3], float b[3]) -{ - *c = a[0]*b[0] + a[1]*b[1] + a[2]*b[2]; -} - -// Vector length -void vectorLength(float * len, float a[3]) -{ - float tmp; - tmp = a[0]*a[0] + a[1]*a[1]+a[2]*a[2]; - *len = sqrt(tmp); -} - -// Normalize vector -void normalizeVector(float a[3]) -{ - float len; - vectorLength(& len,a); - if (len != 0.0) { - len = 1.0 / len; - a[0] *= len; - a[1] *= len; - a[2] *= len; - } -} - -// 3D Vector cross product yeilding vector -void crossProductVectors(float c[3], float a[3], float b[3]) -{ - c[0] = a[1] * b[2] - a[2] * b[1]; - c[1] = a[2] * b[0] - a[0] * b[2]; - c[2] = a[0] * b[1] - a[1] * b[0]; -} - -// initialize matrix -void identityMatrix3x3(float m[3][3]) -{ - m[0][0] = 1.0; - m[0][1] = 0.0; - m[0][2] = 0.0; - - m[1][0] = 0.0; - m[1][1] = 1.0; - m[1][2] = 0.0; - - m[2][0] = 0.0; - m[2][1] = 0.0; - m[2][2] = 1.0; -} - -// matrix copy -void copyMatrix3x3(float b[3][3], float a[3][3]) -{ - b[0][0] = a[0][0]; - b[0][1] = a[0][1]; - b[0][2] = a[0][2]; - - b[1][0] = a[1][0]; - b[1][1] = a[1][1]; - b[1][2] = a[1][2]; - - b[2][0] = a[2][0]; - b[2][1] = a[2][1]; - b[2][2] = a[2][2]; -} - -// matrix transpose -void transposeMatrix3x3(float b[3][3], float a[3][3]) -{ - b[0][0] = a[0][0]; - b[0][1] = a[1][0]; - b[0][2] = a[2][0]; - - b[1][0] = a[0][1]; - b[1][1] = a[1][1]; - b[1][2] = a[2][1]; - - b[2][0] = a[0][2]; - b[2][1] = a[1][2]; - b[2][2] = a[2][2]; -} - -// multiply matrix by scalar -void scaleMatrix3x3(float b[3][3], float s, float a[3][3]) -{ - b[0][0] = (s) * a[0][0]; - b[0][1] = (s) * a[0][1]; - b[0][2] = (s) * a[0][2]; - - b[1][0] = (s) * a[1][0]; - b[1][1] = (s) * a[1][1]; - b[1][2] = (s) * a[1][2]; - - b[2][0] = (s) * a[2][0]; - b[2][1] = (s) * a[2][1]; - b[2][2] = (s) * a[2][2]; -} - -// multiply matrix by scalar and add result to another matrix -void scaleAndAccumulateMatrix3x3(float b[3][3], float s, float a[3][3]) -{ - b[0][0] += s * a[0][0]; - b[0][1] += s * a[0][1]; - b[0][2] += s * a[0][2]; - - b[1][0] += s * a[1][0]; - b[1][1] += s * a[1][1]; - b[1][2] += s * a[1][2]; - - b[2][0] += s * a[2][0]; - b[2][1] += s * a[2][1]; - b[2][2] += s * a[2][2]; -} - -// matrix product -// c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y] -void matrixProduct3x3(float c[3][3], float a[3][3], float b[3][3]) -{ - c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]+a[0][2]*b[2][0]; - c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]+a[0][2]*b[2][1]; - c[0][2] = a[0][0]*b[0][2]+a[0][1]*b[1][2]+a[0][2]*b[2][2]; - - c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]+a[1][2]*b[2][0]; - c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]+a[1][2]*b[2][1]; - c[1][2] = a[1][0]*b[0][2]+a[1][1]*b[1][2]+a[1][2]*b[2][2]; - - c[2][0] = a[2][0]*b[0][0]+a[2][1]*b[1][0]+a[2][2]*b[2][0]; - c[2][1] = a[2][0]*b[0][1]+a[2][1]*b[1][1]+a[2][2]*b[2][1]; - c[2][2] = a[2][0]*b[0][2]+a[2][1]*b[1][2]+a[2][2]*b[2][2]; -} - -// matrix times vector -void matrixDotVector3x3(float p[3], float m[3][3], float v[3]) -{ - p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2]; - p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2]; - p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2]; -} - -// determinant of matrix -// Computes determinant of matrix m, returning d -void determinant3x3(float * d, float m[3][3]) -{ - *d = m[0][0] * (m[1][1]*m[2][2] - m[1][2] * m[2][1]); - *d -= m[0][1] * (m[1][0]*m[2][2] - m[1][2] * m[2][0]); - *d += m[0][2] * (m[1][0]*m[2][1] - m[1][1] * m[2][0]); -} - -// adjoint of matrix -// Computes adjoint of matrix m, returning a -// (Note that adjoint is just the transpose of the cofactor matrix) -void adjoint3x3(float a[3][3], float m[3][3]) -{ - a[0][0] = m[1][1]*m[2][2] - m[1][2]*m[2][1]; - a[1][0] = - (m[1][0]*m[2][2] - m[2][0]*m[1][2]); - a[2][0] = m[1][0]*m[2][1] - m[1][1]*m[2][0]; - a[0][1] = - (m[0][1]*m[2][2] - m[0][2]*m[2][1]); - a[1][1] = m[0][0]*m[2][2] - m[0][2]*m[2][0]; - a[2][1] = - (m[0][0]*m[2][1] - m[0][1]*m[2][0]); - a[0][2] = m[0][1]*m[1][2] - m[0][2]*m[1][1]; - a[1][2] = - (m[0][0]*m[1][2] - m[0][2]*m[1][0]); - a[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0]; -} - -// compute adjoint of matrix and scale -// Computes adjoint of matrix m, scales it by s, returning a -void scaleAdjoint3x3(float a[3][3], float s, float m[3][3]) -{ - a[0][0] = (s) * (m[1][1] * m[2][2] - m[1][2] * m[2][1]); - a[1][0] = (s) * (m[1][2] * m[2][0] - m[1][0] * m[2][2]); - a[2][0] = (s) * (m[1][0] * m[2][1] - m[1][1] * m[2][0]); - - a[0][1] = (s) * (m[0][2] * m[2][1] - m[0][1] * m[2][2]); - a[1][1] = (s) * (m[0][0] * m[2][2] - m[0][2] * m[2][0]); - a[2][1] = (s) * (m[0][1] * m[2][0] - m[0][0] * m[2][1]); - - a[0][2] = (s) * (m[0][1] * m[1][2] - m[0][2] * m[1][1]); - a[1][2] = (s) * (m[0][2] * m[1][0] - m[0][0] * m[1][2]); - a[2][2] = (s) * (m[0][0] * m[1][1] - m[0][1] * m[1][0]); -} - -// inverse of matrix -// Compute inverse of matrix a, returning determinant m and -// inverse b -void invert3x3(float b[3][3], float a[3][3]) -{ - float tmp; - determinant3x3(& tmp, a); - tmp = 1.0 / (tmp); - scaleAdjoint3x3(b, tmp, a); -} - -// skew matrix from vector -void skew(float a[3][3], float v[3]) -{ - a[0][1] = -v[2]; - a[0][2] = v[1]; - a[1][2] = -v[0]; - a[1][0] = v[2]; - a[2][0] = -v[1]; - a[2][1] = v[0]; - // set diagonal to 0 - a[0][0] = 0.0; - a[1][1] = 0.0; - a[2][2] = 0.0; -} - -void printMatrix3X3(float mmm[3][3]) -{ - int i,j; - printf ("matrix mmm is \n"); - if (mmm == NULL) { - printf (" Null \n"); - } else { - for (i=0; i<3; i++) { - for (j=0; j<3; j++) { - printf ("%f ", mmm[i][j]); - } - printf (" \n"); - } - } -} - -void vecPrint(float a[3]) -{ - float len; - vectorLength(& len, a); - printf(" a is %f %f %f length of a is %f \n", a[0], a[1], a[2], len); -} |
