summaryrefslogtreecommitdiff
path: root/src/AltEst/algebra.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/AltEst/algebra.cpp')
-rw-r--r--src/AltEst/algebra.cpp292
1 files changed, 0 insertions, 292 deletions
diff --git a/src/AltEst/algebra.cpp b/src/AltEst/algebra.cpp
deleted file mode 100644
index 653c3b9..0000000
--- a/src/AltEst/algebra.cpp
+++ /dev/null
@@ -1,292 +0,0 @@
-/*
- algebra.cpp: This file contains a number of utilities useful for handling
- 3D vectors
-
- This work is an adaptation from vvector.h, written by Linas Vepstras. The
- original code can be found at:
-
- https://github.com/markkilgard/glut/blob/master/lib/gle/vvector.h
-
- HISTORY:
- Written by Linas Vepstas, August 1991
- Added 2D code, March 1993
- Added Outer products, C++ proofed, Linas Vepstas October 1993
- Adapted for altitude estimation tasks by Juan Gallostra June 2018
-*/
-
-//#include <cmath>
-#include <stdio.h>
-
-#include "algebra.h"
-
-// Copy 3D vector
-void copyVector(float b[3],float a[3])
-{
- b[0] = a[0];
- b[1] = a[1];
- b[2] = a[2];
-}
-
-
-// Vector difference
-void subtractVectors(float v21[3], float v2[3], float v1[3])
-{
- v21[0] = v2[0] - v1[0];
- v21[1] = v2[1] - v1[1];
- v21[2] = v2[2] - v1[2];
-}
-
-// Vector sum
-void sumVectors(float v21[3], float v2[3], float v1[3])
-{
- v21[0] = v2[0] + v1[0];
- v21[1] = v2[1] + v1[1];
- v21[2] = v2[2] + v1[2];
-}
-
-// scalar times vector
-void scaleVector(float c[3],float a, float b[3])
-{
- (c)[0] = a*b[0];
- (c)[1] = a*b[1];
- (c)[2] = a*b[2];
-}
-
-// accumulate scaled vector
-void accumulateScaledVector(float c[3], float a, float b[3])
-{
- (c)[0] += a*b[0];
- (c)[1] += a*b[1];
- (c)[2] += a*b[2];
-}
-
-// Vector dot product
-void dotProductVectors(float * c, float a[3], float b[3])
-{
- *c = a[0]*b[0] + a[1]*b[1] + a[2]*b[2];
-}
-
-// Vector length
-void vectorLength(float * len, float a[3])
-{
- float tmp;
- tmp = a[0]*a[0] + a[1]*a[1]+a[2]*a[2];
- *len = sqrt(tmp);
-}
-
-// Normalize vector
-void normalizeVector(float a[3])
-{
- float len;
- vectorLength(& len,a);
- if (len != 0.0) {
- len = 1.0 / len;
- a[0] *= len;
- a[1] *= len;
- a[2] *= len;
- }
-}
-
-// 3D Vector cross product yeilding vector
-void crossProductVectors(float c[3], float a[3], float b[3])
-{
- c[0] = a[1] * b[2] - a[2] * b[1];
- c[1] = a[2] * b[0] - a[0] * b[2];
- c[2] = a[0] * b[1] - a[1] * b[0];
-}
-
-// initialize matrix
-void identityMatrix3x3(float m[3][3])
-{
- m[0][0] = 1.0;
- m[0][1] = 0.0;
- m[0][2] = 0.0;
-
- m[1][0] = 0.0;
- m[1][1] = 1.0;
- m[1][2] = 0.0;
-
- m[2][0] = 0.0;
- m[2][1] = 0.0;
- m[2][2] = 1.0;
-}
-
-// matrix copy
-void copyMatrix3x3(float b[3][3], float a[3][3])
-{
- b[0][0] = a[0][0];
- b[0][1] = a[0][1];
- b[0][2] = a[0][2];
-
- b[1][0] = a[1][0];
- b[1][1] = a[1][1];
- b[1][2] = a[1][2];
-
- b[2][0] = a[2][0];
- b[2][1] = a[2][1];
- b[2][2] = a[2][2];
-}
-
-// matrix transpose
-void transposeMatrix3x3(float b[3][3], float a[3][3])
-{
- b[0][0] = a[0][0];
- b[0][1] = a[1][0];
- b[0][2] = a[2][0];
-
- b[1][0] = a[0][1];
- b[1][1] = a[1][1];
- b[1][2] = a[2][1];
-
- b[2][0] = a[0][2];
- b[2][1] = a[1][2];
- b[2][2] = a[2][2];
-}
-
-// multiply matrix by scalar
-void scaleMatrix3x3(float b[3][3], float s, float a[3][3])
-{
- b[0][0] = (s) * a[0][0];
- b[0][1] = (s) * a[0][1];
- b[0][2] = (s) * a[0][2];
-
- b[1][0] = (s) * a[1][0];
- b[1][1] = (s) * a[1][1];
- b[1][2] = (s) * a[1][2];
-
- b[2][0] = (s) * a[2][0];
- b[2][1] = (s) * a[2][1];
- b[2][2] = (s) * a[2][2];
-}
-
-// multiply matrix by scalar and add result to another matrix
-void scaleAndAccumulateMatrix3x3(float b[3][3], float s, float a[3][3])
-{
- b[0][0] += s * a[0][0];
- b[0][1] += s * a[0][1];
- b[0][2] += s * a[0][2];
-
- b[1][0] += s * a[1][0];
- b[1][1] += s * a[1][1];
- b[1][2] += s * a[1][2];
-
- b[2][0] += s * a[2][0];
- b[2][1] += s * a[2][1];
- b[2][2] += s * a[2][2];
-}
-
-// matrix product
-// c[x][y] = a[x][0]*b[0][y]+a[x][1]*b[1][y]+a[x][2]*b[2][y]+a[x][3]*b[3][y]
-void matrixProduct3x3(float c[3][3], float a[3][3], float b[3][3])
-{
- c[0][0] = a[0][0]*b[0][0]+a[0][1]*b[1][0]+a[0][2]*b[2][0];
- c[0][1] = a[0][0]*b[0][1]+a[0][1]*b[1][1]+a[0][2]*b[2][1];
- c[0][2] = a[0][0]*b[0][2]+a[0][1]*b[1][2]+a[0][2]*b[2][2];
-
- c[1][0] = a[1][0]*b[0][0]+a[1][1]*b[1][0]+a[1][2]*b[2][0];
- c[1][1] = a[1][0]*b[0][1]+a[1][1]*b[1][1]+a[1][2]*b[2][1];
- c[1][2] = a[1][0]*b[0][2]+a[1][1]*b[1][2]+a[1][2]*b[2][2];
-
- c[2][0] = a[2][0]*b[0][0]+a[2][1]*b[1][0]+a[2][2]*b[2][0];
- c[2][1] = a[2][0]*b[0][1]+a[2][1]*b[1][1]+a[2][2]*b[2][1];
- c[2][2] = a[2][0]*b[0][2]+a[2][1]*b[1][2]+a[2][2]*b[2][2];
-}
-
-// matrix times vector
-void matrixDotVector3x3(float p[3], float m[3][3], float v[3])
-{
- p[0] = m[0][0]*v[0] + m[0][1]*v[1] + m[0][2]*v[2];
- p[1] = m[1][0]*v[0] + m[1][1]*v[1] + m[1][2]*v[2];
- p[2] = m[2][0]*v[0] + m[2][1]*v[1] + m[2][2]*v[2];
-}
-
-// determinant of matrix
-// Computes determinant of matrix m, returning d
-void determinant3x3(float * d, float m[3][3])
-{
- *d = m[0][0] * (m[1][1]*m[2][2] - m[1][2] * m[2][1]);
- *d -= m[0][1] * (m[1][0]*m[2][2] - m[1][2] * m[2][0]);
- *d += m[0][2] * (m[1][0]*m[2][1] - m[1][1] * m[2][0]);
-}
-
-// adjoint of matrix
-// Computes adjoint of matrix m, returning a
-// (Note that adjoint is just the transpose of the cofactor matrix)
-void adjoint3x3(float a[3][3], float m[3][3])
-{
- a[0][0] = m[1][1]*m[2][2] - m[1][2]*m[2][1];
- a[1][0] = - (m[1][0]*m[2][2] - m[2][0]*m[1][2]);
- a[2][0] = m[1][0]*m[2][1] - m[1][1]*m[2][0];
- a[0][1] = - (m[0][1]*m[2][2] - m[0][2]*m[2][1]);
- a[1][1] = m[0][0]*m[2][2] - m[0][2]*m[2][0];
- a[2][1] = - (m[0][0]*m[2][1] - m[0][1]*m[2][0]);
- a[0][2] = m[0][1]*m[1][2] - m[0][2]*m[1][1];
- a[1][2] = - (m[0][0]*m[1][2] - m[0][2]*m[1][0]);
- a[2][2] = m[0][0]*m[1][1] - m[0][1]*m[1][0];
-}
-
-// compute adjoint of matrix and scale
-// Computes adjoint of matrix m, scales it by s, returning a
-void scaleAdjoint3x3(float a[3][3], float s, float m[3][3])
-{
- a[0][0] = (s) * (m[1][1] * m[2][2] - m[1][2] * m[2][1]);
- a[1][0] = (s) * (m[1][2] * m[2][0] - m[1][0] * m[2][2]);
- a[2][0] = (s) * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
-
- a[0][1] = (s) * (m[0][2] * m[2][1] - m[0][1] * m[2][2]);
- a[1][1] = (s) * (m[0][0] * m[2][2] - m[0][2] * m[2][0]);
- a[2][1] = (s) * (m[0][1] * m[2][0] - m[0][0] * m[2][1]);
-
- a[0][2] = (s) * (m[0][1] * m[1][2] - m[0][2] * m[1][1]);
- a[1][2] = (s) * (m[0][2] * m[1][0] - m[0][0] * m[1][2]);
- a[2][2] = (s) * (m[0][0] * m[1][1] - m[0][1] * m[1][0]);
-}
-
-// inverse of matrix
-// Compute inverse of matrix a, returning determinant m and
-// inverse b
-void invert3x3(float b[3][3], float a[3][3])
-{
- float tmp;
- determinant3x3(& tmp, a);
- tmp = 1.0 / (tmp);
- scaleAdjoint3x3(b, tmp, a);
-}
-
-// skew matrix from vector
-void skew(float a[3][3], float v[3])
-{
- a[0][1] = -v[2];
- a[0][2] = v[1];
- a[1][2] = -v[0];
- a[1][0] = v[2];
- a[2][0] = -v[1];
- a[2][1] = v[0];
- // set diagonal to 0
- a[0][0] = 0.0;
- a[1][1] = 0.0;
- a[2][2] = 0.0;
-}
-
-void printMatrix3X3(float mmm[3][3])
-{
- int i,j;
- printf ("matrix mmm is \n");
- if (mmm == NULL) {
- printf (" Null \n");
- } else {
- for (i=0; i<3; i++) {
- for (j=0; j<3; j++) {
- printf ("%f ", mmm[i][j]);
- }
- printf (" \n");
- }
- }
-}
-
-void vecPrint(float a[3])
-{
- float len;
- vectorLength(& len, a);
- printf(" a is %f %f %f length of a is %f \n", a[0], a[1], a[2], len);
-}