diff options
Diffstat (limited to 'include/math/quaternion.h')
| -rw-r--r-- | include/math/quaternion.h | 214 |
1 files changed, 214 insertions, 0 deletions
diff --git a/include/math/quaternion.h b/include/math/quaternion.h new file mode 100644 index 0000000..c5b907a --- /dev/null +++ b/include/math/quaternion.h @@ -0,0 +1,214 @@ +// Inertial Measurement Unit Maths Library +// +// Copyright 2013-2021 Sam Cowen <[email protected]> +// Bug fixes and cleanups by Gé Vissers ([email protected]) +// +// Permission is hereby granted, free of charge, to any person obtaining a +// copy of this software and associated documentation files (the "Software"), +// to deal in the Software without restriction, including without limitation +// the rights to use, copy, modify, merge, publish, distribute, sublicense, +// and/or sell copies of the Software, and to permit persons to whom the +// Software is furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS +// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING +// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER +// DEALINGS IN THE SOFTWARE. + +#ifndef IMUMATH_QUATERNION_HPP +#define IMUMATH_QUATERNION_HPP + +#include <math.h> +#include <stdint.h> +#include <stdlib.h> +#include <string.h> + +#include "matrix.h" + +namespace imu { + +class Quaternion { +public: + Quaternion() : _w(1.0), _x(0.0), _y(0.0), _z(0.0) {} + + Quaternion(double w, double x, double y, double z) + : _w(w), _x(x), _y(y), _z(z) {} + + Quaternion(double w, Vector<3> vec) + : _w(w), _x(vec.x()), _y(vec.y()), _z(vec.z()) {} + + double &w() { return _w; } + double &x() { return _x; } + double &y() { return _y; } + double &z() { return _z; } + + double w() const { return _w; } + double x() const { return _x; } + double y() const { return _y; } + double z() const { return _z; } + + double magnitude() const { + return sqrt(_w * _w + _x * _x + _y * _y + _z * _z); + } + + void normalize() { + double mag = magnitude(); + *this = this->scale(1 / mag); + } + + Quaternion conjugate() const { return Quaternion(_w, -_x, -_y, -_z); } + + void fromAxisAngle(const Vector<3> &axis, double theta) { + _w = cos(theta / 2); + // only need to calculate sine of half theta once + double sht = sin(theta / 2); + _x = axis.x() * sht; + _y = axis.y() * sht; + _z = axis.z() * sht; + } + + void fromMatrix(const Matrix<3> &m) { + double tr = m.trace(); + + double S; + if (tr > 0) { + S = sqrt(tr + 1.0) * 2; + _w = 0.25 * S; + _x = (m(2, 1) - m(1, 2)) / S; + _y = (m(0, 2) - m(2, 0)) / S; + _z = (m(1, 0) - m(0, 1)) / S; + } else if (m(0, 0) > m(1, 1) && m(0, 0) > m(2, 2)) { + S = sqrt(1.0 + m(0, 0) - m(1, 1) - m(2, 2)) * 2; + _w = (m(2, 1) - m(1, 2)) / S; + _x = 0.25 * S; + _y = (m(0, 1) + m(1, 0)) / S; + _z = (m(0, 2) + m(2, 0)) / S; + } else if (m(1, 1) > m(2, 2)) { + S = sqrt(1.0 + m(1, 1) - m(0, 0) - m(2, 2)) * 2; + _w = (m(0, 2) - m(2, 0)) / S; + _x = (m(0, 1) + m(1, 0)) / S; + _y = 0.25 * S; + _z = (m(1, 2) + m(2, 1)) / S; + } else { + S = sqrt(1.0 + m(2, 2) - m(0, 0) - m(1, 1)) * 2; + _w = (m(1, 0) - m(0, 1)) / S; + _x = (m(0, 2) + m(2, 0)) / S; + _y = (m(1, 2) + m(2, 1)) / S; + _z = 0.25 * S; + } + } + + void toAxisAngle(Vector<3> &axis, double &angle) const { + double sqw = sqrt(1 - _w * _w); + if (sqw == 0) // it's a singularity and divide by zero, avoid + return; + + angle = 2 * acos(_w); + axis.x() = _x / sqw; + axis.y() = _y / sqw; + axis.z() = _z / sqw; + } + + Matrix<3> toMatrix() const { + Matrix<3> ret; + ret.cell(0, 0) = 1 - 2 * _y * _y - 2 * _z * _z; + ret.cell(0, 1) = 2 * _x * _y - 2 * _w * _z; + ret.cell(0, 2) = 2 * _x * _z + 2 * _w * _y; + + ret.cell(1, 0) = 2 * _x * _y + 2 * _w * _z; + ret.cell(1, 1) = 1 - 2 * _x * _x - 2 * _z * _z; + ret.cell(1, 2) = 2 * _y * _z - 2 * _w * _x; + + ret.cell(2, 0) = 2 * _x * _z - 2 * _w * _y; + ret.cell(2, 1) = 2 * _y * _z + 2 * _w * _x; + ret.cell(2, 2) = 1 - 2 * _x * _x - 2 * _y * _y; + return ret; + } + + // Returns euler angles that represent the quaternion. Angles are + // returned in rotation order and right-handed about the specified + // axes: + // + // v[0] is applied 1st about z (ie, roll) + // v[1] is applied 2nd about y (ie, pitch) + // v[2] is applied 3rd about x (ie, yaw) + // + // Note that this means result.x() is not a rotation about x; + // similarly for result.z(). + // + Vector<3> toEuler() const { + Vector<3> ret; + double sqw = _w * _w; + double sqx = _x * _x; + double sqy = _y * _y; + double sqz = _z * _z; + + ret.x() = atan2(2.0 * (_x * _y + _z * _w), (sqx - sqy - sqz + sqw)); + ret.y() = asin(-2.0 * (_x * _z - _y * _w) / (sqx + sqy + sqz + sqw)); + ret.z() = atan2(2.0 * (_y * _z + _x * _w), (-sqx - sqy + sqz + sqw)); + + return ret; + } + + Vector<3> toAngularVelocity(double dt) const { + Vector<3> ret; + Quaternion one(1.0, 0.0, 0.0, 0.0); + Quaternion delta = one - *this; + Quaternion r = (delta / dt); + r = r * 2; + r = r * one; + + ret.x() = r.x(); + ret.y() = r.y(); + ret.z() = r.z(); + return ret; + } + + Vector<3> rotateVector(const Vector<2> &v) const { + return rotateVector(Vector<3>(v.x(), v.y())); + } + + Vector<3> rotateVector(const Vector<3> &v) const { + Vector<3> qv(_x, _y, _z); + Vector<3> t = qv.cross(v) * 2.0; + return v + t * _w + qv.cross(t); + } + + Quaternion operator*(const Quaternion &q) const { + return Quaternion(_w * q._w - _x * q._x - _y * q._y - _z * q._z, + _w * q._x + _x * q._w + _y * q._z - _z * q._y, + _w * q._y - _x * q._z + _y * q._w + _z * q._x, + _w * q._z + _x * q._y - _y * q._x + _z * q._w); + } + + Quaternion operator+(const Quaternion &q) const { + return Quaternion(_w + q._w, _x + q._x, _y + q._y, _z + q._z); + } + + Quaternion operator-(const Quaternion &q) const { + return Quaternion(_w - q._w, _x - q._x, _y - q._y, _z - q._z); + } + + Quaternion operator/(double scalar) const { + return Quaternion(_w / scalar, _x / scalar, _y / scalar, _z / scalar); + } + + Quaternion operator*(double scalar) const { return scale(scalar); } + + Quaternion scale(double scalar) const { + return Quaternion(_w * scalar, _x * scalar, _y * scalar, _z * scalar); + } + +private: + double _w, _x, _y, _z; +}; + +} // namespace imu + +#endif
\ No newline at end of file |
