summaryrefslogtreecommitdiff
path: root/include/math/quaternion.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/math/quaternion.h')
-rw-r--r--include/math/quaternion.h214
1 files changed, 214 insertions, 0 deletions
diff --git a/include/math/quaternion.h b/include/math/quaternion.h
new file mode 100644
index 0000000..c5b907a
--- /dev/null
+++ b/include/math/quaternion.h
@@ -0,0 +1,214 @@
+// Inertial Measurement Unit Maths Library
+//
+// Copyright 2013-2021 Sam Cowen <[email protected]>
+// Bug fixes and cleanups by Gé Vissers ([email protected])
+//
+// Permission is hereby granted, free of charge, to any person obtaining a
+// copy of this software and associated documentation files (the "Software"),
+// to deal in the Software without restriction, including without limitation
+// the rights to use, copy, modify, merge, publish, distribute, sublicense,
+// and/or sell copies of the Software, and to permit persons to whom the
+// Software is furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
+// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+// DEALINGS IN THE SOFTWARE.
+
+#ifndef IMUMATH_QUATERNION_HPP
+#define IMUMATH_QUATERNION_HPP
+
+#include <math.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <string.h>
+
+#include "matrix.h"
+
+namespace imu {
+
+class Quaternion {
+public:
+ Quaternion() : _w(1.0), _x(0.0), _y(0.0), _z(0.0) {}
+
+ Quaternion(double w, double x, double y, double z)
+ : _w(w), _x(x), _y(y), _z(z) {}
+
+ Quaternion(double w, Vector<3> vec)
+ : _w(w), _x(vec.x()), _y(vec.y()), _z(vec.z()) {}
+
+ double &w() { return _w; }
+ double &x() { return _x; }
+ double &y() { return _y; }
+ double &z() { return _z; }
+
+ double w() const { return _w; }
+ double x() const { return _x; }
+ double y() const { return _y; }
+ double z() const { return _z; }
+
+ double magnitude() const {
+ return sqrt(_w * _w + _x * _x + _y * _y + _z * _z);
+ }
+
+ void normalize() {
+ double mag = magnitude();
+ *this = this->scale(1 / mag);
+ }
+
+ Quaternion conjugate() const { return Quaternion(_w, -_x, -_y, -_z); }
+
+ void fromAxisAngle(const Vector<3> &axis, double theta) {
+ _w = cos(theta / 2);
+ // only need to calculate sine of half theta once
+ double sht = sin(theta / 2);
+ _x = axis.x() * sht;
+ _y = axis.y() * sht;
+ _z = axis.z() * sht;
+ }
+
+ void fromMatrix(const Matrix<3> &m) {
+ double tr = m.trace();
+
+ double S;
+ if (tr > 0) {
+ S = sqrt(tr + 1.0) * 2;
+ _w = 0.25 * S;
+ _x = (m(2, 1) - m(1, 2)) / S;
+ _y = (m(0, 2) - m(2, 0)) / S;
+ _z = (m(1, 0) - m(0, 1)) / S;
+ } else if (m(0, 0) > m(1, 1) && m(0, 0) > m(2, 2)) {
+ S = sqrt(1.0 + m(0, 0) - m(1, 1) - m(2, 2)) * 2;
+ _w = (m(2, 1) - m(1, 2)) / S;
+ _x = 0.25 * S;
+ _y = (m(0, 1) + m(1, 0)) / S;
+ _z = (m(0, 2) + m(2, 0)) / S;
+ } else if (m(1, 1) > m(2, 2)) {
+ S = sqrt(1.0 + m(1, 1) - m(0, 0) - m(2, 2)) * 2;
+ _w = (m(0, 2) - m(2, 0)) / S;
+ _x = (m(0, 1) + m(1, 0)) / S;
+ _y = 0.25 * S;
+ _z = (m(1, 2) + m(2, 1)) / S;
+ } else {
+ S = sqrt(1.0 + m(2, 2) - m(0, 0) - m(1, 1)) * 2;
+ _w = (m(1, 0) - m(0, 1)) / S;
+ _x = (m(0, 2) + m(2, 0)) / S;
+ _y = (m(1, 2) + m(2, 1)) / S;
+ _z = 0.25 * S;
+ }
+ }
+
+ void toAxisAngle(Vector<3> &axis, double &angle) const {
+ double sqw = sqrt(1 - _w * _w);
+ if (sqw == 0) // it's a singularity and divide by zero, avoid
+ return;
+
+ angle = 2 * acos(_w);
+ axis.x() = _x / sqw;
+ axis.y() = _y / sqw;
+ axis.z() = _z / sqw;
+ }
+
+ Matrix<3> toMatrix() const {
+ Matrix<3> ret;
+ ret.cell(0, 0) = 1 - 2 * _y * _y - 2 * _z * _z;
+ ret.cell(0, 1) = 2 * _x * _y - 2 * _w * _z;
+ ret.cell(0, 2) = 2 * _x * _z + 2 * _w * _y;
+
+ ret.cell(1, 0) = 2 * _x * _y + 2 * _w * _z;
+ ret.cell(1, 1) = 1 - 2 * _x * _x - 2 * _z * _z;
+ ret.cell(1, 2) = 2 * _y * _z - 2 * _w * _x;
+
+ ret.cell(2, 0) = 2 * _x * _z - 2 * _w * _y;
+ ret.cell(2, 1) = 2 * _y * _z + 2 * _w * _x;
+ ret.cell(2, 2) = 1 - 2 * _x * _x - 2 * _y * _y;
+ return ret;
+ }
+
+ // Returns euler angles that represent the quaternion. Angles are
+ // returned in rotation order and right-handed about the specified
+ // axes:
+ //
+ // v[0] is applied 1st about z (ie, roll)
+ // v[1] is applied 2nd about y (ie, pitch)
+ // v[2] is applied 3rd about x (ie, yaw)
+ //
+ // Note that this means result.x() is not a rotation about x;
+ // similarly for result.z().
+ //
+ Vector<3> toEuler() const {
+ Vector<3> ret;
+ double sqw = _w * _w;
+ double sqx = _x * _x;
+ double sqy = _y * _y;
+ double sqz = _z * _z;
+
+ ret.x() = atan2(2.0 * (_x * _y + _z * _w), (sqx - sqy - sqz + sqw));
+ ret.y() = asin(-2.0 * (_x * _z - _y * _w) / (sqx + sqy + sqz + sqw));
+ ret.z() = atan2(2.0 * (_y * _z + _x * _w), (-sqx - sqy + sqz + sqw));
+
+ return ret;
+ }
+
+ Vector<3> toAngularVelocity(double dt) const {
+ Vector<3> ret;
+ Quaternion one(1.0, 0.0, 0.0, 0.0);
+ Quaternion delta = one - *this;
+ Quaternion r = (delta / dt);
+ r = r * 2;
+ r = r * one;
+
+ ret.x() = r.x();
+ ret.y() = r.y();
+ ret.z() = r.z();
+ return ret;
+ }
+
+ Vector<3> rotateVector(const Vector<2> &v) const {
+ return rotateVector(Vector<3>(v.x(), v.y()));
+ }
+
+ Vector<3> rotateVector(const Vector<3> &v) const {
+ Vector<3> qv(_x, _y, _z);
+ Vector<3> t = qv.cross(v) * 2.0;
+ return v + t * _w + qv.cross(t);
+ }
+
+ Quaternion operator*(const Quaternion &q) const {
+ return Quaternion(_w * q._w - _x * q._x - _y * q._y - _z * q._z,
+ _w * q._x + _x * q._w + _y * q._z - _z * q._y,
+ _w * q._y - _x * q._z + _y * q._w + _z * q._x,
+ _w * q._z + _x * q._y - _y * q._x + _z * q._w);
+ }
+
+ Quaternion operator+(const Quaternion &q) const {
+ return Quaternion(_w + q._w, _x + q._x, _y + q._y, _z + q._z);
+ }
+
+ Quaternion operator-(const Quaternion &q) const {
+ return Quaternion(_w - q._w, _x - q._x, _y - q._y, _z - q._z);
+ }
+
+ Quaternion operator/(double scalar) const {
+ return Quaternion(_w / scalar, _x / scalar, _y / scalar, _z / scalar);
+ }
+
+ Quaternion operator*(double scalar) const { return scale(scalar); }
+
+ Quaternion scale(double scalar) const {
+ return Quaternion(_w * scalar, _x * scalar, _y * scalar, _z * scalar);
+ }
+
+private:
+ double _w, _x, _y, _z;
+};
+
+} // namespace imu
+
+#endif \ No newline at end of file