summaryrefslogtreecommitdiff
path: root/test/kalmanFilterTest.cpp
diff options
context:
space:
mode:
authorDawsyn Schraiber <[email protected]>2024-05-09 01:20:17 -0400
committerGitHub <[email protected]>2024-05-09 01:20:17 -0400
commit90c4d94b13472114daab71d3e368660224423c90 (patch)
tree2a56c3780e6ba2f157ce15f2356134cff5035694 /test/kalmanFilterTest.cpp
parentd695dce1a7ea28433db8e893025d1ec66fb077b2 (diff)
downloadactive-drag-system-90c4d94b13472114daab71d3e368660224423c90.tar.gz
active-drag-system-90c4d94b13472114daab71d3e368660224423c90.tar.bz2
active-drag-system-90c4d94b13472114daab71d3e368660224423c90.zip
02/24/2024 Test Launch Version (BB Black) (#11)
* Adding a 90% completed, compilable but untested ADS * Made basic changes to actuator & sensor. Also added motor class * Removed unnecessary .cpp files * Updated sensor & actuator classes, finished ads, added variable time step to kalman filter, set up all tests for future assertions * Relocated 'main' to 'active-drag-system.cpp'. Added more info to README * Removed main.cpp * Added more details to README * Changed some function parameters from pass-by-pointer to pass-by-reference. Also removed the std namespace * Started writing the test cases * Updated the .gitignore file * Removed some files that should be gitignored * Up to date with Jazz's pull request * Test Launch Branch Created; PRU Servo Control with Test Program * Added I2C device class and register IDs for MPL [INCOMPLETE SENSOR IMPLEMENTATION] Needs actual data getting function implementation for both sensors and register IDs for BNO, will implement shortly. * Partial implementation of MPL sensor Added startup method, still needs fleshed out data getters and setters and finished I2C implementation. MOST LIKELY WILL HAVE COMPILATION ISSUES. * *Hypothetically* complete MPL implementation NEEDS HARDWARE TESTING * IMU Header and init() method implementation Needs like, all data handling still lol * Hypothetically functional (Definitely won't compile) * We ball? --------- Co-authored-by: Jazz Jackson <[email protected]> Co-authored-by: Cian Capacci <[email protected]>
Diffstat (limited to 'test/kalmanFilterTest.cpp')
-rw-r--r--test/kalmanFilterTest.cpp101
1 files changed, 101 insertions, 0 deletions
diff --git a/test/kalmanFilterTest.cpp b/test/kalmanFilterTest.cpp
new file mode 100644
index 0000000..e3dc1e4
--- /dev/null
+++ b/test/kalmanFilterTest.cpp
@@ -0,0 +1,101 @@
+#include <iostream>
+#include <gtest/gtest.h>
+#include "eigen3/Eigen/Dense"
+#include "../include/kalmanfilter.hpp"
+
+using namespace Eigen;
+
+class KalmanFilterTest : public ::testing::Test {
+
+ protected:
+
+ KalmanFilterTest() {
+
+ kf = new KalmanFilter(2, 1, 1, 1);
+ }
+
+ //~KalmanFilterTest() {}
+
+ KalmanFilter *kf;
+};
+
+
+/**
+ * @brief Test Setting the initial state x & P
+ *
+ * **/
+TEST_F(KalmanFilterTest, setInitialState) {
+
+ VectorXf state_vec(2);
+ MatrixXf state_cov(2, 2);
+ state_vec << 1, 2;
+ state_cov << 1, 3, 4, 9;
+
+ // Success Case
+ EXPECT_TRUE(kf->setInitialState(state_vec, state_cov));
+
+ // Failure Case
+ VectorXf state_vec2(4);
+ state_vec2 << 1, 2, 3, 4;
+ EXPECT_FALSE(kf->setInitialState(state_vec2, state_cov));
+}
+
+/**
+ * @brief Test a single iteration of the Kalman Filter
+ *
+ * **/
+TEST_F(KalmanFilterTest, run) {
+
+ VectorXf control(1);
+ VectorXf measurement(1);
+ control << 1;
+ measurement << 1;
+ VectorXf res(1);
+
+ res = kf->run(control, measurement, 1);
+
+ EXPECT_NEAR(0.5454, res(0), 0.0001);
+ EXPECT_NEAR(1, res(1), 0.0001);
+}
+
+
+/**
+ * @brief Test run() when the time step value is changed between function calls.
+ *
+ */
+TEST_F(KalmanFilterTest, runChange) {
+
+ VectorXf control(1);
+ VectorXf measurement(1);
+ control << 1;
+ measurement << 1;
+ VectorXf res(1);
+
+ res = kf->run(control, measurement, 0.1);
+ EXPECT_NEAR(0.09545, res(0), 0.00001);
+ EXPECT_NEAR(0.1, res(1), 0.1);
+
+ res = kf->run(control, measurement, 0.15);
+ EXPECT_NEAR(0.2761, res(0), 0.0001);
+ EXPECT_NEAR(0.3585, res(1), 0.0001);
+}
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+