diff options
| author | Dawsyn Schraiber <[email protected]> | 2024-05-09 01:20:17 -0400 |
|---|---|---|
| committer | GitHub <[email protected]> | 2024-05-09 01:20:17 -0400 |
| commit | 90c4d94b13472114daab71d3e368660224423c90 (patch) | |
| tree | 2a56c3780e6ba2f157ce15f2356134cff5035694 /test/kalmanFilterTest.cpp | |
| parent | d695dce1a7ea28433db8e893025d1ec66fb077b2 (diff) | |
| download | active-drag-system-90c4d94b13472114daab71d3e368660224423c90.tar.gz active-drag-system-90c4d94b13472114daab71d3e368660224423c90.tar.bz2 active-drag-system-90c4d94b13472114daab71d3e368660224423c90.zip | |
02/24/2024 Test Launch Version (BB Black) (#11)
* Adding a 90% completed, compilable but untested ADS
* Made basic changes to actuator & sensor. Also added motor class
* Removed unnecessary .cpp files
* Updated sensor & actuator classes, finished ads, added variable time step to kalman filter, set up all tests for future assertions
* Relocated 'main' to 'active-drag-system.cpp'. Added more info to README
* Removed main.cpp
* Added more details to README
* Changed some function parameters from pass-by-pointer to pass-by-reference. Also removed the std namespace
* Started writing the test cases
* Updated the .gitignore file
* Removed some files that should be gitignored
* Up to date with Jazz's pull request
* Test Launch Branch Created; PRU Servo Control with Test Program
* Added I2C device class and register IDs for MPL [INCOMPLETE SENSOR IMPLEMENTATION]
Needs actual data getting function implementation for both sensors and register IDs for BNO, will implement shortly.
* Partial implementation of MPL sensor
Added startup method, still needs fleshed out data getters and setters and finished I2C implementation. MOST LIKELY WILL HAVE COMPILATION ISSUES.
* *Hypothetically* complete MPL implementation
NEEDS HARDWARE TESTING
* IMU Header and init() method implementation
Needs like, all data handling still lol
* Hypothetically functional (Definitely won't compile)
* We ball?
---------
Co-authored-by: Jazz Jackson <[email protected]>
Co-authored-by: Cian Capacci <[email protected]>
Diffstat (limited to 'test/kalmanFilterTest.cpp')
| -rw-r--r-- | test/kalmanFilterTest.cpp | 101 |
1 files changed, 101 insertions, 0 deletions
diff --git a/test/kalmanFilterTest.cpp b/test/kalmanFilterTest.cpp new file mode 100644 index 0000000..e3dc1e4 --- /dev/null +++ b/test/kalmanFilterTest.cpp @@ -0,0 +1,101 @@ +#include <iostream> +#include <gtest/gtest.h> +#include "eigen3/Eigen/Dense" +#include "../include/kalmanfilter.hpp" + +using namespace Eigen; + +class KalmanFilterTest : public ::testing::Test { + + protected: + + KalmanFilterTest() { + + kf = new KalmanFilter(2, 1, 1, 1); + } + + //~KalmanFilterTest() {} + + KalmanFilter *kf; +}; + + +/** + * @brief Test Setting the initial state x & P + * + * **/ +TEST_F(KalmanFilterTest, setInitialState) { + + VectorXf state_vec(2); + MatrixXf state_cov(2, 2); + state_vec << 1, 2; + state_cov << 1, 3, 4, 9; + + // Success Case + EXPECT_TRUE(kf->setInitialState(state_vec, state_cov)); + + // Failure Case + VectorXf state_vec2(4); + state_vec2 << 1, 2, 3, 4; + EXPECT_FALSE(kf->setInitialState(state_vec2, state_cov)); +} + +/** + * @brief Test a single iteration of the Kalman Filter + * + * **/ +TEST_F(KalmanFilterTest, run) { + + VectorXf control(1); + VectorXf measurement(1); + control << 1; + measurement << 1; + VectorXf res(1); + + res = kf->run(control, measurement, 1); + + EXPECT_NEAR(0.5454, res(0), 0.0001); + EXPECT_NEAR(1, res(1), 0.0001); +} + + +/** + * @brief Test run() when the time step value is changed between function calls. + * + */ +TEST_F(KalmanFilterTest, runChange) { + + VectorXf control(1); + VectorXf measurement(1); + control << 1; + measurement << 1; + VectorXf res(1); + + res = kf->run(control, measurement, 0.1); + EXPECT_NEAR(0.09545, res(0), 0.00001); + EXPECT_NEAR(0.1, res(1), 0.1); + + res = kf->run(control, measurement, 0.15); + EXPECT_NEAR(0.2761, res(0), 0.0001); + EXPECT_NEAR(0.3585, res(1), 0.0001); +} + + + + + + + + + + + + + + + + + + + + |
