summaryrefslogtreecommitdiff
path: root/src/unused
diff options
context:
space:
mode:
authorDawsyn Schraiber <[email protected]>2024-05-09 02:05:35 -0400
committerGitHub <[email protected]>2024-05-09 02:05:35 -0400
commit93acde052369568beaefb0d99629d8797f5c191f (patch)
treea3fb96ddad2d289aa7f8bf410c60cf6289bca7a1 /src/unused
parent5f68c7a1b5c8dec82d4a2e1e12443a41b5196b1d (diff)
downloadactive-drag-system-93acde052369568beaefb0d99629d8797f5c191f.tar.gz
active-drag-system-93acde052369568beaefb0d99629d8797f5c191f.tar.bz2
active-drag-system-93acde052369568beaefb0d99629d8797f5c191f.zip
Raspberry Pi Pico (#12)
* Adding a 90% completed, compilable but untested ADS * Made basic changes to actuator & sensor. Also added motor class * Removed unnecessary .cpp files * Updated sensor & actuator classes, finished ads, added variable time step to kalman filter, set up all tests for future assertions * Relocated 'main' to 'active-drag-system.cpp'. Added more info to README * Removed main.cpp * Added more details to README * Changed some function parameters from pass-by-pointer to pass-by-reference. Also removed the std namespace * Started writing the test cases * Updated the .gitignore file * Removed some files that should be gitignored * Up to date with Jazz's pull request * Test Launch Branch Created; PRU Servo Control with Test Program * Added I2C device class and register IDs for MPL [INCOMPLETE SENSOR IMPLEMENTATION] Needs actual data getting function implementation for both sensors and register IDs for BNO, will implement shortly. * Partial implementation of MPL sensor Added startup method, still needs fleshed out data getters and setters and finished I2C implementation. MOST LIKELY WILL HAVE COMPILATION ISSUES. * *Hypothetically* complete MPL implementation NEEDS HARDWARE TESTING * IMU Header and init() method implementation Needs like, all data handling still lol * Hypothetically functional (Definitely won't compile) * We ball? * Conversion to Raspberry Pi Pico Build System; Removed Beaglebone specific code; Simple blinking example in ADS source file; builds for Pico W * Rearranged build so dependent upon cmake file already existing in pico-sdk; current executable prints current altitude, velocity, and time taken to read and calculate said values; ~320 us to do so * Altimeter interrupt callback for Pad to Boost State; dummy templates for other callbacks with comments describing potential implementation details * Altimeter interrupts relatively finished; need to test with vacuum chamber to verify behavior * Established interrupt pins as pullup and active-low; adjusted callback functions to properly use function pointers; still need to verify interrupt system with vacuum chamber * Removed weird artifact in .gitignore, adjust CMakeLists to auto pull pico sdk, added Dockerfile * added Docker dev container file * modified CMakeLists to auto pull sdk if not already downloaded, add build.sh script, fixed Dockerfile * added bno055 support * changed bno055 lin accel struct to use float instead of double * added bno055 support not tested, but compiles, fixed CMakLists to before I messed with it * added absolute quaternion output from bno055 * Added Euler and aboslute linear accelration * Flash implementation for data logging; each log entry is 32 bytes long * added base pwm functions and started on apogee detection * State machine verified functional with logging capabilities; currently on same core * Ooops missed double define, renamed LOOP_HZ to LOOP_PERIOD; State machine functional after merge still * Simple test program to see servo PWM range; logging with semaphores for safe multithreading * Kalman filters generously provided from various sources for temporary replacement; minimum deployment 30 percent; state machine functionality restored; multithreading logging verified; altimeter broke and replaced * Stop logging on END state; provide deployment function with AGL instead of ASL altitude * Various minimal changes; Flash size from 1MB to 8MB; M1939 to M2500T burn time; pin assignments for new PCB; External Status LED to Internal Status LED --------- Co-authored-by: Jazz Jackson <[email protected]> Co-authored-by: Cian Capacci <[email protected]> Co-authored-by: Gregory Wainer <[email protected]>
Diffstat (limited to 'src/unused')
-rw-r--r--src/unused/actuationPlan.cpp60
-rw-r--r--src/unused/ads.cpp286
-rw-r--r--src/unused/logger.cpp132
-rw-r--r--src/unused/motor.cpp46
-rw-r--r--src/unused/rocketUtils.cpp35
-rw-r--r--src/unused/sensorAltimeter.cpp115
-rw-r--r--src/unused/sensorIMU.cpp385
-rw-r--r--src/unused/surfaceFitModel.cpp40
8 files changed, 1099 insertions, 0 deletions
diff --git a/src/unused/actuationPlan.cpp b/src/unused/actuationPlan.cpp
new file mode 100644
index 0000000..a987478
--- /dev/null
+++ b/src/unused/actuationPlan.cpp
@@ -0,0 +1,60 @@
+#include "../include/actuationPlan.hpp"
+
+ActuationPlan::ActuationPlan() {}
+
+ActuationPlan::ActuationPlan(SurfaceFitModel sFitModel) : sFitModel(sFitModel) {
+
+}
+
+
+void ActuationPlan::runPlan(Vehicle& rocket) {
+
+
+ if (rocket.imuReadFail || rocket.altiReadFail) {
+ rocket.deployment_angle = deploy_percentage_to_angle(0); // No fin deployment
+ }
+
+ rocket.fail_time = time(nullptr);
+
+ // 2024 Mission---------------------------------------------------------------------
+ if (rocket.status == GLIDE) {
+
+ // Fin deployment based on current drag coefficient value
+ try {
+ double cd = sFitModel.getFit(rocket.filtered_velocity, rocket.filtered_altitude);
+ cd = std::min(std::max(0.0, cd), 100.0);
+ rocket.deployment_angle = deploy_percentage_to_angle(cd);
+ }
+
+ // Full deployment during coasting
+ catch (...) {
+ rocket.deployment_angle = deploy_percentage_to_angle(0);
+
+ if ((time(nullptr) - rocket.deploy_time) > 2 && (time(nullptr) - rocket.deploy_time) < 7) {
+ rocket.deployment_angle = deploy_percentage_to_angle(100);
+ }
+ }
+ }
+
+ else if (rocket.status == APOGEE) {
+
+ rocket.deployment_angle = deploy_percentage_to_angle(50);
+ }
+
+ else {
+
+ rocket.deploy_time = time(nullptr);
+ }
+ // End 2024 Mission------------------------------------------------------------------
+}
+
+
+
+
+
+
+
+
+
+
+
diff --git a/src/unused/ads.cpp b/src/unused/ads.cpp
new file mode 100644
index 0000000..5484970
--- /dev/null
+++ b/src/unused/ads.cpp
@@ -0,0 +1,286 @@
+#include "../include/ads.hpp"
+
+
+// Private----------------------------------------------------------------------
+void ADS::logSummary() {
+
+ std::string output_string = "" + state_for_log[rocket.status];
+
+ if (!rocket.altiInitFail && !rocket.altiReadFail) {
+
+ output_string += format_data(" ", rocket.filtered_altitude, 3);
+ }
+
+ output_string += format_data(" ", rocket.deployment_angle, 2);
+
+ if (!rocket.imuInitFail && !rocket.imuReadFail) {
+
+ output_string += format_data(" ", rocket.acceleration[2], 2);
+ output_string += format_data(" ", rocket.filtered_velocity, 2);
+ }
+
+ Logger::Get().log(output_string);
+}
+
+
+void ADS::updateOnPadAltitude() {
+
+ std::this_thread::sleep_for(std::chrono::milliseconds(1000));
+
+ double avg_alt = 0;
+ double alt_read_count = 0;
+
+ while (alt_read_count < COUNT_LIMIT) {
+
+ altimeter.getData(&rocket.current_altitude);
+ alt_read_count++;
+ avg_alt = (avg_alt * (alt_read_count - 1) + rocket.current_altitude) / alt_read_count;
+ }
+
+ Logger::Get().log(format_data("pad altitude initialization complete - ", avg_alt, 3));
+ rocket.ON_PAD_altitude = avg_alt;
+}
+
+
+void ADS::updateSensorData() {
+
+ if (!rocket.imuInitFail) {
+
+ try {
+ imu.getData((void*)&rocket);
+ }
+
+ catch (...) {
+ std::exception_ptr e = std::current_exception();
+ Logger::Get().logErr(e.__cxa_exception_type()->name());
+ rocket.imuReadFail = true;
+ }
+ }
+
+ rocket.previous_altitude = rocket.current_altitude; // Why was this placed here????
+
+ if (!rocket.altiInitFail) {
+
+ try {
+ altimeter.getData((void*)&rocket.current_altitude);
+ if (rocket.ON_PAD_fail) {
+ rocket.ON_PAD_altitude = rocket.current_altitude;
+ rocket.ON_PAD_fail = false;
+ }
+
+ rocket.altiReadFail = false;
+ }
+
+ catch (...) {
+ std::exception_ptr e = std::current_exception();
+ Logger::Get().logErr(e.__cxa_exception_type()->name());
+ rocket.altiReadFail = true;
+ }
+ }
+}
+
+
+void ADS::updateRocketState() {
+
+ // Filter sensor data
+ VectorXf control_input(1);
+ VectorXf measurement(1);
+ control_input << rocket.acceleration[2];
+ measurement << rocket.current_altitude;
+ VectorXf filtered = kf.run(control_input, measurement, rocket.dt);
+ rocket.filtered_altitude = filtered(0);
+ rocket.filtered_velocity = filtered(1);
+
+ if (rocket.apogee_altitude < rocket.filtered_altitude) {
+ rocket.apogee_altitude = rocket.filtered_altitude;
+ }
+
+ // (VEHICLE ON PAD)
+ if (rocket.status == ON_PAD) {
+
+ // If launch detected
+ if (rocket.acceleration[2] >= BOOST_ACCEL_THRESH * G_0
+ && rocket.filtered_altitude >= BOOST_HEIGHT_THRESH + rocket.ON_PAD_altitude) {
+ Logger::Get().log(format_data("LOM at -- ", (double)(rocket.liftoff_time - rocket.start_time), 3));
+ }
+
+ if (TEST_MODE && time(nullptr) - rocket.start_time >= 15) {
+ Logger::Get().log(format_data("TEST LOM at -- ", (double)(rocket.liftoff_time - rocket.start_time), 3));
+ }
+
+ if (time(nullptr) - rocket.relog_time > 2*60*60
+ && rocket.status == ON_PAD) {
+ std::cout << "OverWR Success" << std::endl;
+ }
+ }
+
+ // (VEHICLE BOOSTING)
+ else if (rocket.status == BOOST) {
+
+ if (rocket.acceleration[2] <= GLIDE_ACCEL_THRESH * G_0
+ || time(nullptr) - rocket.liftoff_time >= TIME_BO) {
+ rocket.status = GLIDE;
+ }
+
+ }
+
+ // (VEHICLE IN GLIDE)
+ else if (rocket.status == GLIDE) {
+
+ if (rocket.filtered_altitude < rocket.apogee_altitude - APOGEE_FSM_CHANGE
+ || time(nullptr) - rocket.liftoff_time >= TIME_BO + TIME_APO) {
+ rocket.status = APOGEE;
+ Logger::Get().log(format_data("APO: ", (double)(rocket.apogee_altitude), 2));
+ }
+ }
+
+ // (VEHICLE AT APOGEE)
+ else if (rocket.status == APOGEE) {
+
+ if (rocket.filtered_altitude <= FSM_DONE_SURFACE_ALTITUDE + rocket.ON_PAD_altitude) {
+ rocket.status = DONE;
+ return;
+ }
+ }
+}
+
+
+// Public----------------------------------------------------------------------
+ADS::ADS(ActuationPlan plan) : plan(plan) {
+
+ rocket.status = ON_PAD;
+
+ rocket.apogee_altitude = 0;
+ rocket.previous_altitude = 0;
+ rocket.current_altitude = 0;
+ rocket.filtered_altitude = 0;
+
+ rocket.filtered_velocity = 0;
+
+ rocket.duty_span = DUTY_MAX - DUTY_MIN;
+ rocket.deployment_angle = deploy_percentage_to_angle(INIT_DEPLOYMENT);
+
+ rocket.dt = 0.1;
+
+ rocket.imuInitFail = false;
+ rocket.imuReadFail = false;
+ rocket.altiInitFail = false;
+ rocket.altiReadFail = false;
+
+ rocket.ON_PAD_altitude = 0;
+ rocket.ON_PAD_fail = false;
+
+ rocket.start_time = time(nullptr);
+ rocket.fail_time = rocket.start_time;
+ rocket.relog_time = rocket.start_time;
+ rocket.led_time = rocket.start_time;
+
+ imu = IMUSensor();
+ altimeter = AltimeterSensor();
+ motor = Motor();
+ kf = KalmanFilter(2, 1, 1, rocket.dt);
+
+ Logger::Get().openLog(LOG_FILENAME);
+
+ motor.init(&rocket);
+
+ imu.init(nullptr);
+ altimeter.init(nullptr);
+
+ if (TEST_MODE) {
+
+ Logger::Get().log("TEST Record Start --");
+ }
+}
+
+
+
+void ADS::run() {
+
+ if (!rocket.altiInitFail) {
+ try {
+ updateOnPadAltitude();
+ }
+
+ catch (...) {
+ std::exception_ptr e = std::current_exception();
+ Logger::Get().logErr(e.__cxa_exception_type()->name());
+ rocket.ON_PAD_fail = true;
+ }
+ }
+
+ rocket.loop_time = time(nullptr);
+ while (rocket.status != DONE) {
+
+ updateSensorData();
+
+ if (!rocket.imuInitFail && !rocket.altiInitFail) {
+
+ updateRocketState();
+
+ // Run the Actuation Plan----------------------------------
+ plan.runPlan(rocket);
+
+ if (rocket.imuReadFail || rocket.altiReadFail) {
+
+ if (rocket.imuReadFail) {
+ imu.init(nullptr); // Restart
+ Logger::Get().log("Altimeter reset attempt");
+ }
+
+ if (rocket.altiReadFail) {
+ altimeter.init(nullptr); // Restart
+ Logger::Get().log("IMU reset attempt");
+ }
+ }
+ }
+
+ // Altimeter or IMU setup failed. Attempt to reinitialize
+ else {
+
+ if (time(nullptr) - rocket.fail_time >= TIME_END) {
+ rocket.status = DONE;
+ }
+
+ if (rocket.altiInitFail || rocket.altiReadFail) {
+ imu.init(nullptr); // Restart
+ Logger::Get().log("Altimeter reset attempt");
+ }
+
+ if (rocket.imuInitFail || rocket.imuReadFail) {
+ altimeter.init(nullptr); // Restart
+ Logger::Get().log("IMU reset attempt");
+ }
+
+ rocket.deployment_angle = deploy_percentage_to_angle(INIT_DEPLOYMENT);
+ }
+
+ // Actuate Servos
+ motor.writeData(&rocket);
+
+ logSummary();
+
+ // Blink Beaglebone LED 1
+ if (time(nullptr) - rocket.led_time > LED_GAP_TIME) {
+ led_out(&rocket);
+ }
+
+ std::this_thread::sleep_for(std::chrono::milliseconds(1));
+ rocket.dt = time(nullptr) - rocket.loop_time;
+ rocket.loop_time = time(nullptr);
+ }
+
+ Logger::Get().closeLog();
+ std::cout << "Done" << std::endl;
+}
+
+
+
+
+
+
+
+
+
+
+
diff --git a/src/unused/logger.cpp b/src/unused/logger.cpp
new file mode 100644
index 0000000..a857be8
--- /dev/null
+++ b/src/unused/logger.cpp
@@ -0,0 +1,132 @@
+#include "../include/logger.hpp"
+
+// Private----------------------------------------------------------------------
+std::string Logger::getDate() {
+
+ t = time(nullptr);
+ now = localtime(&t);
+ return "(" + days[now->tm_wday] + " " + months[now->tm_mon] + " "
+ + std::to_string(now->tm_mday) + " " + std::to_string(now->tm_year + 1900) + ")";
+}
+
+std::string Logger::getTime() {
+
+ t = time(nullptr);
+ now = localtime(&t);
+ std::string hour = std::to_string(now->tm_hour);
+ std::string min = std::to_string(now->tm_min);
+ std::string sec = std::to_string(now->tm_sec);
+ //string hour = "0" + to_string(now->tm_hour);
+
+ if (now->tm_hour < 10) {
+ hour = "0" + std::to_string(now->tm_hour);
+ }
+
+ if (now->tm_min < 10) {
+ min = "0" + std::to_string(now->tm_min);
+ }
+
+ if (now->tm_sec < 10) {
+ sec = "0" + std::to_string(now->tm_sec);
+ }
+
+ return hour + ":" + min +
+ ":" + sec;
+}
+
+
+// Public----------------------------------------------------------------------
+Logger& Logger::Get() {
+
+ static Logger loggerSingleton;
+ return loggerSingleton;
+}
+
+//Logger Logger::loggerSingleton;
+
+
+bool Logger::openLog(std::string _filename) {
+
+ filename = _filename;
+
+ if (file_open) {
+ return false;
+ }
+
+ file.open(filename, std::ios::in | std::ios::out | std::ios::app);
+
+ if (!file) {
+ return false;
+ }
+
+ file_open = true;
+ std::string date = getDate();
+ std::string timestamp = getTime();
+ file << timestamp << infoTag << "Log Start---- " << date << std::endl;
+
+ return true;
+}
+
+
+void Logger::closeLog() {
+
+ std::string timestamp = getTime();
+ file << timestamp << infoTag << "Log End----\n\n";
+
+ file.close();
+ file_open = false;
+}
+
+
+bool Logger::log(std::string data) {
+
+ if (!file) {
+ return false;
+ }
+
+ if (!file_open) {
+ return false;
+ }
+ std::string timestamp = getTime();
+ file << timestamp << infoTag << data << std::endl;
+ return true;
+}
+
+bool Logger::logErr(std::string data) {
+
+ if (!file) {
+ return false;
+ }
+
+ if (!file_open) {
+ return false;
+ }
+
+ std::string timestamp = getTime();
+ file << timestamp << errorTag << data << std::endl;
+ return true;
+}
+
+
+bool Logger::printLog() {
+
+ if (file.is_open()) {
+ std::cout << "Log still open. Please close Log." << std::endl;
+ return false;
+ }
+
+ file.open(filename, std::ios::in);
+
+ if (!file.is_open()) {
+ return false;
+ }
+
+ std::string line;
+ while(getline(file, line)) {
+ std::cout << line << std::endl;
+ }
+
+ file.close();
+
+ return true;
+}
diff --git a/src/unused/motor.cpp b/src/unused/motor.cpp
new file mode 100644
index 0000000..84785a9
--- /dev/null
+++ b/src/unused/motor.cpp
@@ -0,0 +1,46 @@
+#include "../include/motor.hpp"
+
+
+
+Motor::Motor() {
+
+
+}
+
+bool Motor::init(void* data) {
+
+ Vehicle *vehicle = (Vehicle *) data;
+ double duty = 100 - ((MIN_ANGLE / 180) * vehicle->duty_span + DUTY_MIN);
+
+ // Initialize stuff
+ // .....
+ // .....
+
+
+ data = (void*) vehicle; // Is this necessary?
+ return true;
+}
+
+
+bool Motor::writeData(void* data) {
+
+ Vehicle *vehicle = (Vehicle *) data;
+ double duty = 100 - ((vehicle->deployment_angle / 180) * vehicle->duty_span + DUTY_MIN);
+
+ // Send the Data somewhere
+ // ..... Pin
+ // ..... Duty
+ // ..... PWM frequency Hz
+ // ..... Polarity
+
+
+ if (1 == 2) {
+ Logger::Get().logErr("Some type of Error");
+ return false;
+ }
+
+ data = (void*) vehicle; // Is this necessary?
+ return true;
+}
+
+
diff --git a/src/unused/rocketUtils.cpp b/src/unused/rocketUtils.cpp
new file mode 100644
index 0000000..45fcfc3
--- /dev/null
+++ b/src/unused/rocketUtils.cpp
@@ -0,0 +1,35 @@
+#include "../include/rocketUtils.hpp"
+
+double deploy_percentage_to_angle(double percentage) {
+
+ return (MAX_ANGLE - MIN_ANGLE) / 100.0 * percentage + MIN_ANGLE;
+}
+
+
+std::string format_data(std::string prefix, double data, int precision) {
+
+ std::stringstream stream;
+ stream << std::fixed << std::setprecision(precision) << data;
+ std::string s = stream.str();
+ return prefix + s;
+}
+
+bool led_out(Vehicle *vehicle) {
+
+ std::ofstream file;
+ file.open(LED_FILENAME);
+ if (!file.is_open()) {
+ return false;
+ }
+
+ file << std::to_string(vehicle->led_brightness);
+ file.close();
+
+ vehicle->led_time = time(nullptr);
+ vehicle->led_brightness = (vehicle->led_brightness + 1) % 2;
+
+ return true;
+}
+
+std::string state_for_log[5] = {"ON_PAD", "BOOST", "GLIDE", "APOGEE", "DONE"};
+ \ No newline at end of file
diff --git a/src/unused/sensorAltimeter.cpp b/src/unused/sensorAltimeter.cpp
new file mode 100644
index 0000000..8ec065d
--- /dev/null
+++ b/src/unused/sensorAltimeter.cpp
@@ -0,0 +1,115 @@
+#include "sensorAltimeter.hpp"
+
+AltimeterSensor::AltimeterSensor(std::string I2C_FILE_in) {
+ I2C_FILE = I2C_FILE_in;
+ deviceAddress = 0x60;
+}
+
+//Startup routine copied from Adafruit library, as is most of the data getting methods
+//Adaptation is largely editing for readability and porting from Adafruit_I2C to BBB I2C (sensorI2C.hpp implementation)
+bool AltimeterSensor::init() {
+
+ // Vehicle *vehicle = (Vehicle *) data;
+ // // Do Stuff
+ // data = (void*) vehicle;
+
+ //Pass file string from parent to setup function, actual I2C bus gets stored internally.
+ setupI2C(I2C_FILE);
+
+ // Check a register with a hard-coded value to see if comms are working
+ uint8_t whoami = readSingleRegister(MPL3115A2_WHOAMI);
+ if (whoami != 0xC4) {
+ fprintf(stderr, "MPL INITIALIZATION DID NOT PASS WHOAMI DEVICE CHECK!, got: %X, expected: 0xC4\n", whoami);
+ return false;
+ }
+
+ //Send device dedicated reset byte to CTRL1 Register
+ writeRegister(MPL3115A2_CTRL_REG1, MPL3115A2_CTRL_REG1_RST);
+ //Wait for reset to wipe its way through device and reset appropriate bit of CTRL1 Register
+ while (readSingleRegister(MPL3115A2_CTRL_REG1) & MPL3115A2_CTRL_REG1_RST);
+
+ //Set oversampling (?) and altitude mode by default
+ currentMode = MPL3115A2_ALTIMETER;
+ ctrl_reg1.reg = MPL3115A2_CTRL_REG1_OS128 | MPL3115A2_CTRL_REG1_ALT;
+ writeRegister(MPL3115A2_CTRL_REG1, ctrl_reg1.reg);
+
+ //Configure data return types, I don't really understand this chunk but Adafruit does it this way so we will too I guess
+ writeRegister(MPL3115A2_PT_DATA_CFG, MPL3115A2_PT_DATA_CFG_TDEFE |
+ MPL3115A2_PT_DATA_CFG_PDEFE |
+ MPL3115A2_PT_DATA_CFG_DREM);
+
+ return true;
+}
+
+//EXPECTED THAT USER WILL NEVER SET MODE TO PRESSURE AFTER INITIAL CONFIGURATION
+void AltimeterSensor::setMode(mpl3115a2_mode_t mode) {
+ ctrl_reg1.reg = readSingleRegister(MPL3115A2_CTRL_REG1);
+ ctrl_reg1.bit.ALT = mode;
+ writeRegister(MPL3115A2_CTRL_REG1, ctrl_reg1.reg);
+ currentMode = mode;
+}
+
+double AltimeterSensor::getAltitude() {
+ //Request new data reading
+ requestOneShotReading();
+ //If new data is available, read it and store it to internal fields
+ if (isNewDataAvailable()) {
+ //Logger flag here for new data?
+ updateCurrentDataBuffer();
+ }
+ //Return internal field, whether updated or not
+ return internalAltitude;
+}
+
+double AltimeterSensor::getTemperature() {
+ //Request new data reading
+ requestOneShotReading();
+ //If new data is available, read it and store it to internal fields
+ if (isNewDataAvailable()) {
+ //Logger flag here for new data?
+ updateCurrentDataBuffer();
+ }
+ //Return internal field, whether updated or not
+ return internalTemperature;
+}
+
+void AltimeterSensor::requestOneShotReading() {
+ //Request current status of oneshot reading
+ ctrl_reg1.reg = readSingleRegister(MPL3115A2_CTRL_REG1);
+ //If oneshot is complete, proc a new one; if it isn't, do nothing.
+ //THIS PRODUCES DUPLICATE DATA IF READING REQUESTS FROM BB DON'T LINE UP WITH READING COMPLETION ON SENSOR.
+ if (!ctrl_reg1.bit.OST) {
+ // initiate one-shot measurement
+ ctrl_reg1.bit.OST = 1;
+ writeRegister(MPL3115A2_CTRL_REG1, ctrl_reg1.reg);
+ }
+}
+
+bool AltimeterSensor::isNewDataAvailable() {
+ //Returns PTDR bit of status register, 1 if new data for Temp OR Alt/Pres is available
+ //There *are* registers available for exclusively temperature *or* pressure/altitude, but
+ //for simplicity's sake we'll use the combined one for now.
+ return ((readSingleRegister(MPL3115A2_REGISTER_STATUS) & MPL3115A2_REGISTER_STATUS_PTDR) != 0);
+}
+
+//Adafruit returns specific field based on input parameter, this method updates all internal fields at once instead
+void AltimeterSensor::updateCurrentDataBuffer() {
+ uint8_t buffer[5] = {MPL3115A2_REGISTER_PRESSURE_MSB, 0, 0, 0, 0};
+ readMultipleRegisters(MPL3115A2_REGISTER_PRESSURE_MSB, 5);
+
+ //Pressure is no longer used, assumed rocket is only logging altitude
+ // uint32_t pressure;
+ // pressure = uint32_t(buffer[0]) << 16 | uint32_t(buffer[1]) << 8 |
+ // uint32_t(buffer[2]);
+ // return double(pressure) / 6400.0;
+
+ //Altitude Conversion
+ int32_t alt;
+ alt = uint32_t(buffer[0]) << 24 | uint32_t(buffer[1]) << 16 |
+ uint32_t(buffer[2]) << 8;
+ internalAltitude = double(alt) / 65536.0;
+
+ int16_t t;
+ t = uint16_t(buffer[3]) << 8 | uint16_t(buffer[4]);
+ internalTemperature = double(t) / 256.0;
+}
diff --git a/src/unused/sensorIMU.cpp b/src/unused/sensorIMU.cpp
new file mode 100644
index 0000000..941ea35
--- /dev/null
+++ b/src/unused/sensorIMU.cpp
@@ -0,0 +1,385 @@
+#include "../include/sensorIMU.hpp"
+
+IMUSensor::IMUSensor(std::string I2C_FILE) {
+ this -> I2C_FILE = I2C_FILE;
+}
+
+bool IMUSensor::init(void* data) {
+
+ //I2C_File passed on object creation, stored in sensorI2C parent
+ setupI2C(I2C_FILE);
+
+ //In the adafruit code there's a big step of waiting for timeout and connection stuff for up to a full second
+ //I don't do that here because the BBB takes like 17 years to boot so we'll just hope it goes faster than that
+
+ //Sanity check for factory device ID
+ uint8_t id = readSingleRegister(BNO055_CHIP_ID_ADDR);
+ if (id != BNO055_ID) {
+ fprintf(stderr, "DEVICE ID DID NOT PASS SANITY CHECK FOR BNO IMU!");
+ return false;
+ }
+
+ //Set default operating mode of IMU into config from startup (will be set properly after config phase)
+ setModeHard(OPERATION_MODE_CONFIG);
+
+ //Writes 1 to the system reset bit in the trigger register
+ writeRegister(BNO055_SYS_TRIGGER_ADDR, 0x20);
+ //Wait for reset to complete by doing sanity check again
+ while (readSingleRegister(BNO055_CHIP_ID_ADDR) != BNO055_ID);
+
+ //Set power mode for sensor
+ writeRegister(BNO055_PWR_MODE_ADDR, POWER_MODE_NORMAL);
+
+ //Sensor chip uses two "pages" to multiplex register values
+ //Page 0 contains the sensor data (not configuration), which is what we want
+ writeRegister(BNO055_PAGE_ID_ADDR, 0);
+
+ //Genuinely no idea why Adafruit does this, ensuring all triggers are off before mode config I guess
+ writeRegister(BNO055_SYS_TRIGGER_ADDR, 0x0);
+
+ setModeTemp(default_mode);
+
+ return true;
+}
+
+//Sets mode so it can be undone for temporary changes, like operation setting
+void IMUSensor::setModeTemp(adafruit_bno055_opmode_t mode) {
+ currentMode = mode;
+ writeRegister(BNO055_OPR_MODE_ADDR, currentMode);
+}
+
+//Sets mode *AND* internal state variable
+void IMUSensor::setModeTemp(adafruit_bno055_opmode_t mode) {
+ writeRegister(BNO055_OPR_MODE_ADDR, currentMode);
+}
+
+adafruit_bno055_opmode_t IMUSensor::getMode() {
+ return (adafruit_bno055_opmode_t)readSingleRegister(BNO055_OPR_MODE_ADDR);
+}
+
+imu::Vector<3> IMUSensor::getVector(adafruit_vector_type_t vector_type) {
+ imu::Vector<3> xyz;
+ uint8_t buffer[6] = readMultipleRegisters((adafruit_bno055_reg_t)vector_type, 6);
+
+ int16_t x, y, z;
+ x = y = z = 0;
+
+ /* Read vector data (6 bytes) */
+ x = ((int16_t)buffer[0]) | (((int16_t)buffer[1]) << 8);
+ y = ((int16_t)buffer[2]) | (((int16_t)buffer[3]) << 8);
+ z = ((int16_t)buffer[4]) | (((int16_t)buffer[5]) << 8);
+
+ /*!
+ * Convert the value to an appropriate range (section 3.6.4)
+ * and assign the value to the Vector type
+ */
+ switch (vector_type) {
+ case VECTOR_MAGNETOMETER:
+ /* 1uT = 16 LSB */
+ xyz[0] = ((double)x) / 16.0;
+ xyz[1] = ((double)y) / 16.0;
+ xyz[2] = ((double)z) / 16.0;
+ break;
+ case VECTOR_GYROSCOPE:
+ /* 1dps = 16 LSB */
+ xyz[0] = ((double)x) / 16.0;
+ xyz[1] = ((double)y) / 16.0;
+ xyz[2] = ((double)z) / 16.0;
+ break;
+ case VECTOR_EULER:
+ /* 1 degree = 16 LSB */
+ xyz[0] = ((double)x) / 16.0;
+ xyz[1] = ((double)y) / 16.0;
+ xyz[2] = ((double)z) / 16.0;
+ break;
+ case VECTOR_ACCELEROMETER:
+ /* 1m/s^2 = 100 LSB */
+ xyz[0] = ((double)x) / 100.0;
+ xyz[1] = ((double)y) / 100.0;
+ xyz[2] = ((double)z) / 100.0;
+ break;
+ case VECTOR_LINEARACCEL:
+ /* 1m/s^2 = 100 LSB */
+ xyz[0] = ((double)x) / 100.0;
+ xyz[1] = ((double)y) / 100.0;
+ xyz[2] = ((double)z) / 100.0;
+ break;
+ case VECTOR_GRAVITY:
+ /* 1m/s^2 = 100 LSB */
+ xyz[0] = ((double)x) / 100.0;
+ xyz[1] = ((double)y) / 100.0;
+ xyz[2] = ((double)z) / 100.0;
+ break;
+ }
+
+ return xyz;
+}
+imu::Quaternion IMUSensor::getQuat() {
+ uint8_t buffer[8] = readMultipleRegisters(BNO055_QUATERNION_DATA_W_LSB_ADDR, 8);
+
+ int16_t x, y, z, w;
+ x = y = z = w = 0;
+
+ //Bit shift data into the right places and store it
+ w = (((uint16_t)buffer[1]) << 8) | ((uint16_t)buffer[0]);
+ x = (((uint16_t)buffer[3]) << 8) | ((uint16_t)buffer[2]);
+ y = (((uint16_t)buffer[5]) << 8) | ((uint16_t)buffer[4]);
+ z = (((uint16_t)buffer[7]) << 8) | ((uint16_t)buffer[6]);
+
+ /*!
+ * Assign to Quaternion
+ * See
+ * https://cdn-shop.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf
+ * 3.6.5.5 Orientation (Quaternion)
+ */
+ const double scale = (1.0 / (1 << 14));
+ imu::Quaternion quat(scale * w, scale * x, scale * y, scale * z);
+ return quat;
+}
+
+int8_t IMUSensor::getTemp() {
+ int8_t temp = (int8_t)(readSingleRegister(BNO055_TEMP_ADDR));
+ return temp;
+}
+
+void IMUSensor::setAxisRemap(adafruit_bno055_axis_remap_config_t remapcode) {
+ //Put into proper config for mapping stuff
+ setModeTemp(OPERATION_MODE_CONFIG);
+ writeRegister(BNO055_AXIS_MAP_CONFIG_ADDR, remapcode);
+
+ //Return mode to operating mode
+ setModeTemp(currentMode);
+}
+
+void IMUSensor::setAxisSign(adafruit_bno055_axis_remap_sign_t remapsign) {
+ //See above method, pretty much the exact same
+ setModeTemp(OPERATION_MODE_CONFIG);
+ writeRegister(BNO055_AXIS_MAP_SIGN_ADDR, remapsign);
+ setModeTemp(currentMode);
+}
+
+//This method is weird; it intakes several existing byte pointers to see what action it should take. Luckily, we shouldn't have to use it.
+void IMUSensor::getSystemStatus(uint8_t *system_status, uint8_t *self_test_result, uint8_t *system_error) {
+ //Make sure IMU is on proper register page to get system status
+ writeRegister(BNO055_PAGE_ID_ADDR, 0);
+
+ //If system status requested, read the status.
+ if (system_status != 0) *system_status = readSingleRegister(BNO055_SYS_STAT_ADDR);
+ //If self test result requested, pull the self test results.
+ if (self_test_result != 0) *self_test_result = readSingleRegister(BNO055_SELFTEST_RESULT_ADDR);
+ //Finally, if there's an error pull and stash it.
+ if (system_error != 0) *system_error = readSingleRegister(BNO055_SYS_ERR_ADDR);
+}
+
+//Same as above method, byte pointers are fed into it as parameters that get populated by method.
+void IMUSensor::getCalibration(uint8_t *sys, uint8_t *gyro, uint8_t *accel, uint8_t *mag) {
+ uint8_t calData = readSingleRegister(BNO055_CALIB_STAT_ADDR);
+ if (sys != NULL) {
+ *sys = (calData >> 6) & 0x03;
+ }
+ if (gyro != NULL) {
+ *gyro = (calData >> 4) & 0x03;
+ }
+ if (accel != NULL) {
+ *accel = (calData >> 2) & 0x03;
+ }
+ if (mag != NULL) {
+ *mag = calData & 0x03;
+ }
+}
+
+/* Functions to deal with raw calibration data */
+bool IMUSensor::getSensorOffsets(uint8_t *calibData) {
+ if (isFullyCalibrated()) {
+ setModeTemp(OPERATION_MODE_CONFIG);
+
+ calibData = readMultipleRegisters(ACCEL_OFFSET_X_LSB_ADDR, NUM_BNO055_OFFSET_REGISTERS);
+
+ setModeTemp(currentMode);
+ return true;
+ }
+ return false;
+}
+
+//Fully populated offset getter using type of offset, not just calibration data
+bool IMUSensor::getSensorOffsets(adafruit_bno055_offsets_t &offsets_type) {
+ if (isFullyCalibrated()) {
+ setModeTemp(OPERATION_MODE_CONFIG);
+
+ /* Accel offset range depends on the G-range:
+ +/-2g = +/- 2000 mg
+ +/-4g = +/- 4000 mg
+ +/-8g = +/- 8000 mg
+ +/-1§g = +/- 16000 mg */
+ offsets_type.accel_offset_x = (readSingleRegister(ACCEL_OFFSET_X_MSB_ADDR) << 8) |
+ (readSingleRegister(ACCEL_OFFSET_X_LSB_ADDR));
+ offsets_type.accel_offset_y = (readSingleRegister(ACCEL_OFFSET_Y_MSB_ADDR) << 8) |
+ (readSingleRegister(ACCEL_OFFSET_Y_LSB_ADDR));
+ offsets_type.accel_offset_z = (readSingleRegister(ACCEL_OFFSET_Z_MSB_ADDR) << 8) |
+ (readSingleRegister(ACCEL_OFFSET_Z_LSB_ADDR));
+
+ /* Magnetometer offset range = +/- 6400 LSB where 1uT = 16 LSB */
+ offsets_type.mag_offset_x =
+ (readSingleRegister(MAG_OFFSET_X_MSB_ADDR) << 8) | (readSingleRegister(MAG_OFFSET_X_LSB_ADDR));
+ offsets_type.mag_offset_y =
+ (readSingleRegister(MAG_OFFSET_Y_MSB_ADDR) << 8) | (readSingleRegister(MAG_OFFSET_Y_LSB_ADDR));
+ offsets_type.mag_offset_z =
+ (readSingleRegister(MAG_OFFSET_Z_MSB_ADDR) << 8) | (readSingleRegister(MAG_OFFSET_Z_LSB_ADDR));
+
+ /* Gyro offset range depends on the DPS range:
+ 2000 dps = +/- 32000 LSB
+ 1000 dps = +/- 16000 LSB
+ 500 dps = +/- 8000 LSB
+ 250 dps = +/- 4000 LSB
+ 125 dps = +/- 2000 LSB
+ ... where 1 DPS = 16 LSB */
+ offsets_type.gyro_offset_x =
+ (readSingleRegister(GYRO_OFFSET_X_MSB_ADDR) << 8) | (readSingleRegister(GYRO_OFFSET_X_LSB_ADDR));
+ offsets_type.gyro_offset_y =
+ (readSingleRegister(GYRO_OFFSET_Y_MSB_ADDR) << 8) | (readSingleRegister(GYRO_OFFSET_Y_LSB_ADDR));
+ offsets_type.gyro_offset_z =
+ (readSingleRegister(GYRO_OFFSET_Z_MSB_ADDR) << 8) | (readSingleRegister(GYRO_OFFSET_Z_LSB_ADDR));
+
+ /* Accelerometer radius = +/- 1000 LSB */
+ offsets_type.accel_radius =
+ (readSingleRegister(ACCEL_RADIUS_MSB_ADDR) << 8) | (readSingleRegister(ACCEL_RADIUS_LSB_ADDR));
+
+ /* Magnetometer radius = +/- 960 LSB */
+ offsets_type.mag_radius =
+ (readSingleRegister(MAG_RADIUS_MSB_ADDR) << 8) | (readSingleRegister(MAG_RADIUS_LSB_ADDR));
+
+ setModeTemp(currentMode);
+ return true;
+ }
+ return false;
+}
+
+void IMUSensor::setSensorOffsets(const uint8_t *calibData) {
+ setModeTemp(OPERATION_MODE_CONFIG);
+
+ /* Note: Configuration will take place only when user writes to the last
+ byte of each config data pair (ex. ACCEL_OFFSET_Z_MSB_ADDR, etc.).
+ Therefore the last byte must be written whenever the user wants to
+ changes the configuration. */
+
+ /* A writeLen() would make this much cleaner */
+ writeRegister(ACCEL_OFFSET_X_LSB_ADDR, calibData[0]);
+ writeRegister(ACCEL_OFFSET_X_MSB_ADDR, calibData[1]);
+ writeRegister(ACCEL_OFFSET_Y_LSB_ADDR, calibData[2]);
+ writeRegister(ACCEL_OFFSET_Y_MSB_ADDR, calibData[3]);
+ writeRegister(ACCEL_OFFSET_Z_LSB_ADDR, calibData[4]);
+ writeRegister(ACCEL_OFFSET_Z_MSB_ADDR, calibData[5]);
+
+ writeRegister(MAG_OFFSET_X_LSB_ADDR, calibData[6]);
+ writeRegister(MAG_OFFSET_X_MSB_ADDR, calibData[7]);
+ writeRegister(MAG_OFFSET_Y_LSB_ADDR, calibData[8]);
+ writeRegister(MAG_OFFSET_Y_MSB_ADDR, calibData[9]);
+ writeRegister(MAG_OFFSET_Z_LSB_ADDR, calibData[10]);
+ writeRegister(MAG_OFFSET_Z_MSB_ADDR, calibData[11]);
+
+ writeRegister(GYRO_OFFSET_X_LSB_ADDR, calibData[12]);
+ writeRegister(GYRO_OFFSET_X_MSB_ADDR, calibData[13]);
+ writeRegister(GYRO_OFFSET_Y_LSB_ADDR, calibData[14]);
+ writeRegister(GYRO_OFFSET_Y_MSB_ADDR, calibData[15]);
+ writeRegister(GYRO_OFFSET_Z_LSB_ADDR, calibData[16]);
+ writeRegister(GYRO_OFFSET_Z_MSB_ADDR, calibData[17]);
+
+ writeRegister(ACCEL_RADIUS_LSB_ADDR, calibData[18]);
+ writeRegister(ACCEL_RADIUS_MSB_ADDR, calibData[19]);
+
+ writeRegister(MAG_RADIUS_LSB_ADDR, calibData[20]);
+ writeRegister(MAG_RADIUS_MSB_ADDR, calibData[21]);
+
+ setModeTemp(currentMode);
+}
+
+void IMUSensor::setSensorOffsets(const adafruit_bno055_offsets_t &offsets_type) {
+ setModeTemp(OPERATION_MODE_CONFIG);
+
+ /* Note: Configuration will take place only when user writes to the last
+ byte of each config data pair (ex. ACCEL_OFFSET_Z_MSB_ADDR, etc.).
+ Therefore the last byte must be written whenever the user wants to
+ changes the configuration. */
+
+ writeRegister(ACCEL_OFFSET_X_LSB_ADDR, (offsets_type.accel_offset_x) & 0x0FF);
+ writeRegister(ACCEL_OFFSET_X_MSB_ADDR, (offsets_type.accel_offset_x >> 8) & 0x0FF);
+ writeRegister(ACCEL_OFFSET_Y_LSB_ADDR, (offsets_type.accel_offset_y) & 0x0FF);
+ writeRegister(ACCEL_OFFSET_Y_MSB_ADDR, (offsets_type.accel_offset_y >> 8) & 0x0FF);
+ writeRegister(ACCEL_OFFSET_Z_LSB_ADDR, (offsets_type.accel_offset_z) & 0x0FF);
+ writeRegister(ACCEL_OFFSET_Z_MSB_ADDR, (offsets_type.accel_offset_z >> 8) & 0x0FF);
+
+ writeRegister(MAG_OFFSET_X_LSB_ADDR, (offsets_type.mag_offset_x) & 0x0FF);
+ writeRegister(MAG_OFFSET_X_MSB_ADDR, (offsets_type.mag_offset_x >> 8) & 0x0FF);
+ writeRegister(MAG_OFFSET_Y_LSB_ADDR, (offsets_type.mag_offset_y) & 0x0FF);
+ writeRegister(MAG_OFFSET_Y_MSB_ADDR, (offsets_type.mag_offset_y >> 8) & 0x0FF);
+ writeRegister(MAG_OFFSET_Z_LSB_ADDR, (offsets_type.mag_offset_z) & 0x0FF);
+ writeRegister(MAG_OFFSET_Z_MSB_ADDR, (offsets_type.mag_offset_z >> 8) & 0x0FF);
+
+ writeRegister(GYRO_OFFSET_X_LSB_ADDR, (offsets_type.gyro_offset_x) & 0x0FF);
+ writeRegister(GYRO_OFFSET_X_MSB_ADDR, (offsets_type.gyro_offset_x >> 8) & 0x0FF);
+ writeRegister(GYRO_OFFSET_Y_LSB_ADDR, (offsets_type.gyro_offset_y) & 0x0FF);
+ writeRegister(GYRO_OFFSET_Y_MSB_ADDR, (offsets_type.gyro_offset_y >> 8) & 0x0FF);
+ writeRegister(GYRO_OFFSET_Z_LSB_ADDR, (offsets_type.gyro_offset_z) & 0x0FF);
+ writeRegister(GYRO_OFFSET_Z_MSB_ADDR, (offsets_type.gyro_offset_z >> 8) & 0x0FF);
+
+ writeRegister(ACCEL_RADIUS_LSB_ADDR, (offsets_type.accel_radius) & 0x0FF);
+ writeRegister(ACCEL_RADIUS_MSB_ADDR, (offsets_type.accel_radius >> 8) & 0x0FF);
+
+ writeRegister(MAG_RADIUS_LSB_ADDR, (offsets_type.mag_radius) & 0x0FF);
+ writeRegister(MAG_RADIUS_MSB_ADDR, (offsets_type.mag_radius >> 8) & 0x0FF);
+
+ setModeTemp(currentMode);
+
+}
+
+bool IMUSensor::isFullyCalibrated() {
+ uint8_t system, gyro, accel, mag;
+ getCalibration(&system, &gyro, &accel, &mag);
+
+ switch (currentMode) {
+ case OPERATION_MODE_ACCONLY:
+ return (accel == 3);
+ case OPERATION_MODE_MAGONLY:
+ return (mag == 3);
+ case OPERATION_MODE_GYRONLY:
+ case OPERATION_MODE_M4G: /* No magnetometer calibration required. */
+ return (gyro == 3);
+ case OPERATION_MODE_ACCMAG:
+ case OPERATION_MODE_COMPASS:
+ return (accel == 3 && mag == 3);
+ case OPERATION_MODE_ACCGYRO:
+ case OPERATION_MODE_IMUPLUS:
+ return (accel == 3 && gyro == 3);
+ case OPERATION_MODE_MAGGYRO:
+ return (mag == 3 && gyro == 3);
+ default:
+ return (system == 3 && gyro == 3 && accel == 3 && mag == 3);
+ }
+}
+
+/* Power managments functions */
+void IMUSensor::enterSuspendMode() {
+ /* Switch to config mode (just in case since this is the default) */
+ setModeTemp(OPERATION_MODE_CONFIG);
+ writeRegister(BNO055_PWR_MODE_ADDR, 0x02);
+ /* Set the requested operating mode (see section 3.3) */
+ setModeTemp(currentMode);
+}
+
+void IMUSensor::enterNormalMode() {
+ /* Switch to config mode (just in case since this is the default) */
+ setModeTemp(OPERATION_MODE_CONFIG);
+ writeRegister(BNO055_PWR_MODE_ADDR, 0x00);
+ /* Set the requested operating mode (see section 3.3) */
+ setModeTemp(modeback);
+}
+
+
+
+
+
+
+
+
+
+
diff --git a/src/unused/surfaceFitModel.cpp b/src/unused/surfaceFitModel.cpp
new file mode 100644
index 0000000..d48da49
--- /dev/null
+++ b/src/unused/surfaceFitModel.cpp
@@ -0,0 +1,40 @@
+#include "../include/surfaceFitModel.hpp"
+
+SurfaceFitModel::SurfaceFitModel() {
+
+ p = MatrixXd::Zero(X_DEGREE + 1, Y_DEGREE + 1);
+
+ p(0, 0) = -781536.384794701;
+ p(1, 0) = 8623.59011973048;
+ p(0, 1) = 643.65918253;
+ p(2, 0) = -34.3646691281487;
+ p(1, 1) = -5.46066535343611;
+ p(0, 2) = -0.177121900557321;
+ p(3, 0) = 0.0573287698655951;
+ p(2, 1) = 0.0150031142038895;
+ p(1, 2) = 0.00101871763126609;
+ p(0, 3) = 1.63862900553892e-05;
+ p(4, 0) = -3.21785828407871e-05;
+ p(3, 1) = -1.3161091180883e-05;
+ p(2, 2) = -1.42505256569339e-06;
+ p(1, 3) = -4.76209793830867e-08;
+}
+
+
+double SurfaceFitModel::getFit(double x, double y) {
+
+ return p(0, 0) + p(1, 0) * x + p(0, 1) * y + p(2, 0) * pow(x, 2) +
+ p(1, 1) * x * y + p(0, 2) * pow(y, 2) + p(3, 0) * pow(x, 3) +
+ p(2, 1) * pow(x, 2) * y + p(1, 2) * x * pow(y, 2) + p(0, 3) * pow(y, 3) +
+ p(4, 0) * pow(x, 4) + p(3, 1) * pow(x, 3) * y + p(2, 2) * pow(x, 2) * pow(y, 2) +
+ p(1, 3) * x * pow(y, 3);
+}
+
+
+
+
+
+
+
+
+