summaryrefslogtreecommitdiff
path: root/include/kalmanfilter.hpp
diff options
context:
space:
mode:
authorDawsyn Schraiber <[email protected]>2024-05-09 01:20:17 -0400
committerGitHub <[email protected]>2024-05-09 01:20:17 -0400
commit90c4d94b13472114daab71d3e368660224423c90 (patch)
tree2a56c3780e6ba2f157ce15f2356134cff5035694 /include/kalmanfilter.hpp
parentd695dce1a7ea28433db8e893025d1ec66fb077b2 (diff)
downloadactive-drag-system-90c4d94b13472114daab71d3e368660224423c90.tar.gz
active-drag-system-90c4d94b13472114daab71d3e368660224423c90.tar.bz2
active-drag-system-90c4d94b13472114daab71d3e368660224423c90.zip
02/24/2024 Test Launch Version (BB Black) (#11)
* Adding a 90% completed, compilable but untested ADS * Made basic changes to actuator & sensor. Also added motor class * Removed unnecessary .cpp files * Updated sensor & actuator classes, finished ads, added variable time step to kalman filter, set up all tests for future assertions * Relocated 'main' to 'active-drag-system.cpp'. Added more info to README * Removed main.cpp * Added more details to README * Changed some function parameters from pass-by-pointer to pass-by-reference. Also removed the std namespace * Started writing the test cases * Updated the .gitignore file * Removed some files that should be gitignored * Up to date with Jazz's pull request * Test Launch Branch Created; PRU Servo Control with Test Program * Added I2C device class and register IDs for MPL [INCOMPLETE SENSOR IMPLEMENTATION] Needs actual data getting function implementation for both sensors and register IDs for BNO, will implement shortly. * Partial implementation of MPL sensor Added startup method, still needs fleshed out data getters and setters and finished I2C implementation. MOST LIKELY WILL HAVE COMPILATION ISSUES. * *Hypothetically* complete MPL implementation NEEDS HARDWARE TESTING * IMU Header and init() method implementation Needs like, all data handling still lol * Hypothetically functional (Definitely won't compile) * We ball? --------- Co-authored-by: Jazz Jackson <[email protected]> Co-authored-by: Cian Capacci <[email protected]>
Diffstat (limited to 'include/kalmanfilter.hpp')
-rw-r--r--include/kalmanfilter.hpp98
1 files changed, 98 insertions, 0 deletions
diff --git a/include/kalmanfilter.hpp b/include/kalmanfilter.hpp
new file mode 100644
index 0000000..2c8398c
--- /dev/null
+++ b/include/kalmanfilter.hpp
@@ -0,0 +1,98 @@
+#pragma once
+#include "eigen3/Eigen/Dense"
+#include <iostream>
+#include <cmath>
+
+using namespace Eigen;
+
+class KalmanFilter {
+
+ private:
+
+ VectorXf state_vector; // x
+ MatrixXf state_covariance; // P
+
+ MatrixXf state_transition_M; // F
+ MatrixXf control_input_M; // B
+ MatrixXf measurement_M; // H
+
+ MatrixXf process_noise_covariance; // Q
+ MatrixXf measurement_covariance; // R
+
+ MatrixXf I; // Identity
+
+ int n; // State Vector Dimension
+ int p; // Control Vector Dimension
+ int m; // Measurement Vector Dimension
+
+ double dt; // timestep
+
+ /**
+ * @brief Initialize all necessary matrices.
+ *
+ */
+ void matrixInit();
+
+ /**
+ * @brief Update any existing variable elements in your State Transition
+ * & Control Input matrices.
+ *
+ */
+ void updateMatrices();
+
+ /**
+ * @brief Predict current State Vector & State Covariance
+ * given the current control input.
+ *
+ * @param control_vec The control input to be applied to the
+ * previous State Vector
+ */
+ void prediction(VectorXf control_vec);
+
+ /**
+ * @brief Correct the State Vector & State Covariance predictions
+ * given a related current measurement.
+ *
+ * @param measurement Current measurement
+ */
+ void update(VectorXf measurement);
+
+ public:
+
+ KalmanFilter();
+
+ /**
+ * @brief Construct a new Kalman Filter object
+ * Set the sizes of the Filter's user inputs
+ *
+ * @param state_dim State Vector Dimension. i.e. dim(x)
+ * @param control_dim Control/Input Vector Dimension. i.e. dim(u)
+ * @param measurement_dim Measurement Vector Dimension. i.e. dim(z)
+ * @param dt timestep
+ */
+ KalmanFilter(int state_dim, int control_dim, int measurement_dim, double dt);
+
+
+ /**
+ * @brief Optional function to set a custom initial state for the Filter.
+ * If not called, State Vector & State Covariance are zero-initialized
+ *
+ * @param state_vec Initial State Vector
+ * @param state_cov Initial State Covariance
+ *
+ * @return Whether state initialization was successful
+ */
+ bool setInitialState(VectorXf state_vec, MatrixXf state_cov);
+
+ /**
+ * @brief Perform Kalman Filter operation with given control input vector
+ * and measurement.
+ *
+ * @param control current control command
+ * @param measurement current measurement
+ * @param dt timestep
+ *
+ * @return Filtered state vector
+ */
+ VectorXf run(VectorXf control, VectorXf measurement, double _dt);
+}; \ No newline at end of file