#include #include #include #include #include "pico/stdio.h" #include "hardware/gpio.h" #include "hardware/i2c.h" #define MAX_SCL 400000 #define BNO055_OPR_MODE_ADDR 0x3D #define BNO055_OPR_MODE_CONFIG 0x00 #define BNO055_SYS_TRIGGER_ADDR 0x3F #define BNO055_ADDRESS 0x28 #define BNO055_CHIP_ID_ADDR 0x00 #define BNO055_CHIP_ID 0xA0 #define BNO055_OPR_MODE_NDOF 0x0C #define BNO055_CALIB_STAT_ADDR 0x35 #define ACCEL_OFFSET_X_LSB_ADDR 0x55 #define BNO055_LINEAR_ACCEL_DATA_X_LSB_ADDR 0x28 #define BNO055_QUATERNION_DATA_W_LSB_ADDR 0x20 #define UNIT_SELECTION 0x3B void get_calibration(uint8_t *sys, uint8_t *gyro, uint8_t *accel, uint8_t *mag); int main() { stdio_init_all(); getchar(); i2c_init(i2c_default, MAX_SCL); gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C); gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C); gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN); gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN); uint8_t buf[2] = {BNO055_CHIP_ID_ADDR}; uint8_t id = 0x00; sleep_ms(1000); i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 1, false); i2c_read_blocking(i2c_default, BNO055_ADDRESS, &id, 1, false); while (id != BNO055_CHIP_ID) { i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 1, false); i2c_read_blocking(i2c_default, BNO055_ADDRESS, &id, 1, false); printf("Id not correct!, seeing: %" PRIu8 "\n", id); sleep_ms(10); } buf[0] = BNO055_OPR_MODE_ADDR; buf[1] = BNO055_OPR_MODE_CONFIG; i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false); buf[0] = BNO055_SYS_TRIGGER_ADDR; buf[1] = 0x20; // RESET i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false); sleep_ms(30); buf[0] = BNO055_CHIP_ID_ADDR; id = 0x00; while (id != BNO055_CHIP_ID) { i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 1, false); i2c_read_blocking(i2c_default, BNO055_ADDRESS, &id, 1, false); printf("Id not correct!, seeing: %" PRIu8 "\n", id); sleep_ms(10); } buf[0] = BNO055_SYS_TRIGGER_ADDR; buf[1] = 0x00; // RESET i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false); sleep_ms(30); // Set units to m/s^2 buf[0] = UNIT_SELECTION; buf[1] = 0x00; // Windows, Celsius, Degrees, DPS, m/s^2 i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false); sleep_ms(50); buf[0] = BNO055_OPR_MODE_ADDR; buf[1] = BNO055_OPR_MODE_NDOF; i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false); uint8_t gyro = 0x00, accel = 0x00, mag = 0x00; printf("Magnetometer: Perform the figure-eight calibration dance.\n"); while (mag != 3) { // Calibration Dance Step One: Magnetometer // Move sensor away from magnetic interference or shields // Perform the figure-eight until calibrated get_calibration(NULL, NULL, NULL, &mag); printf("Mag Calib Status: %3.0f\n", (100 / 3 * mag)); sleep_ms(1000); } printf("... CALIBRATED\n"); sleep_ms(1000); printf("Accelerometer: Perform the six-step calibration dance.\n"); while (accel != 3) { // Calibration Dance Step Two: Accelerometer // Place sensor board into six stable positions for a few seconds each: // 1) x-axis right, y-axis up, z-axis away // 2) x-axis up, y-axis left, z-axis away // 3) x-axis left, y-axis down, z-axis away // 4) x-axis down, y-axis right, z-axis away // 5) x-axis left, y-axis right, z-axis up // 6) x-axis right, y-axis left, z-axis down // Repeat the steps until calibrated get_calibration(NULL, NULL, &accel, NULL); printf("Accel Calib Status: %3.0f\n", (100 / 3 * accel)); sleep_ms(1000); } printf("... CALIBRATED\n"); sleep_ms(1000); printf("Gyroscope: Perform the hold-in-place calibration dance.\n"); while (gyro != 3) { // Calibration Dance Step Three: Gyroscope // Place sensor in any stable position for a few seconds // (Accelerometer calibration may also calibrate the gyro) get_calibration(NULL, &gyro, NULL, NULL); printf("Gyro Calib Status: %3.0f\n", (100 / 3 * gyro)); sleep_ms(1000); } printf("... CALIBRATED\n"); sleep_ms(1000); printf("CALIBRATION COMPLETED\n"); // Get Sensor Offsets buf[0] = BNO055_OPR_MODE_ADDR; buf[1] = BNO055_OPR_MODE_CONFIG; uint8_t sensor_offsets[22]; i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false); sleep_ms(30); buf[0] = ACCEL_OFFSET_X_LSB_ADDR; i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 1, false); i2c_read_blocking(i2c_default, BNO055_ADDRESS, sensor_offsets, 18, false); for (uint8_t i = 0; i < 18; i++) { printf("sensor_offsets[%" PRIu8 "] = 0x%" PRIx8 ";\r\n", i + 1, sensor_offsets[i]); } sleep_ms(5000); buf[0] = BNO055_OPR_MODE_ADDR; buf[1] = BNO055_OPR_MODE_NDOF; i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false); sleep_ms(5000); getchar(); uint8_t lin_accel[6]; uint8_t quat[8]; float accel_x, accel_y, accel_z; float abs_lin_accel_x, abs_lin_accel_y, abs_lin_accel_z; float abs_quaternion_w, abs_quaternion_x, abs_quaternion_y, abs_quaternion_z; while (1) { uint8_t lin_accel_reg = BNO055_LINEAR_ACCEL_DATA_X_LSB_ADDR; i2c_write_blocking(i2c_default, BNO055_ADDRESS, &lin_accel_reg, 1, true); i2c_read_blocking(i2c_default, BNO055_ADDRESS, lin_accel, 6, false); int16_t x, y, z; x = y = z = 0; x = ((int16_t)lin_accel[0]) | (((int16_t)lin_accel[1]) << 8); y = ((int16_t)lin_accel[2]) | (((int16_t)lin_accel[3]) << 8); z = ((int16_t)lin_accel[4]) | (((int16_t)lin_accel[5]) << 8); accel_x = ((float)x) / 100.0; accel_y = ((float)y) / 100.0; accel_z = ((float)z) / 100.0; uint8_t quat_reg = BNO055_QUATERNION_DATA_W_LSB_ADDR; i2c_write_blocking(i2c_default, BNO055_ADDRESS, &quat_reg, 1, true); i2c_read_blocking(i2c_default, BNO055_ADDRESS, quat, 8, false); int16_t w; w = x = y = z = 0; w = ((int16_t)quat[0]) | (((int16_t)quat[1]) << 8); x = ((int16_t)quat[2]) | (((int16_t)quat[3]) << 8); y = ((int16_t)quat[4]) | (((int16_t)quat[5]) << 8); z = ((int16_t)quat[6]) | (((int16_t)quat[7]) << 8); abs_quaternion_w = ((float)w) / 16384.0; // 2^14 LSB abs_quaternion_x = ((float)x) / 16384.0; abs_quaternion_y = ((float)y) / 16384.0; abs_quaternion_z = ((float)z) / 16384.0; Eigen::Quaternion q; q.w() = abs_quaternion_w; q.x() = abs_quaternion_x; q.y() = abs_quaternion_y; q.z() = abs_quaternion_z; // q.normalize(); Eigen::Matrix3f rotation_matrix = q.toRotationMatrix(); Eigen::Vector3f lin_accel; abs_lin_accel_x = accel_x* rotation_matrix(0, 0) + accel_y * rotation_matrix(0, 1) + accel_z* rotation_matrix(0, 2); abs_lin_accel_y = accel_x * rotation_matrix(1, 0) + accel_y * rotation_matrix(1, 1) + accel_z * rotation_matrix(1, 2); abs_lin_accel_z = -1.0f * (accel_x * rotation_matrix(2, 0) + accel_y * rotation_matrix(2, 1) + accel_z * rotation_matrix(2, 2)); printf("Acceleration Vector: %4.2f, %4.2f, %4.2f\n", accel_x, accel_y, accel_z); printf("Abs Acceleration Vector: %4.2f, %4.2f, %4.2f\n", abs_lin_accel_x, abs_lin_accel_y, abs_lin_accel_z); printf("Quaternion: %4.2f, %4.2f, %4.2f, %4.2f\n\n\n", abs_quaternion_w, abs_quaternion_x, abs_quaternion_y, abs_quaternion_z); sleep_ms(1000); } return 0; } void get_calibration(uint8_t *sys, uint8_t *gyro, uint8_t *accel, uint8_t *mag) { uint8_t buf[1] = {BNO055_CALIB_STAT_ADDR}; uint8_t cal_data = 0x00; i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 1, false); i2c_read_blocking(i2c_default, BNO055_ADDRESS, &cal_data, 1, false); if (sys != NULL) { *sys = (cal_data >> 6) & 0x03; } if (gyro != NULL) { *gyro = (cal_data >> 4) & 0x03; } if (accel != NULL) { *accel = (cal_data >> 2) & 0x03; } if (mag != NULL) { *mag = cal_data & 0x03; } }