#include #include #include #include "../include/kalmanfilter.hpp" using namespace Eigen; class KalmanFilterTest : public ::testing::Test { protected: KalmanFilterTest() { kf = new KalmanFilter(2, 1, 1, 1); } //~KalmanFilterTest() {} KalmanFilter *kf; }; /** * @brief Test Setting the initial state x & P * * **/ TEST_F(KalmanFilterTest, setInitialState) { VectorXf state_vec(2); MatrixXf state_cov(2, 2); state_vec << 1, 2; state_cov << 1, 3, 4, 9; // Success Case EXPECT_TRUE(kf->setInitialState(state_vec, state_cov)); // Failure Case VectorXf state_vec2(4); state_vec2 << 1, 2, 3, 4; EXPECT_FALSE(kf->setInitialState(state_vec2, state_cov)); } /** * @brief Test a single iteration of the Kalman Filter * * **/ TEST_F(KalmanFilterTest, run) { VectorXf control(1); VectorXf measurement(1); control << 1; measurement << 1; VectorXf res(1); res = kf->run(control, measurement, 1); EXPECT_NEAR(0.5454, res(0), 0.0001); EXPECT_NEAR(1, res(1), 0.0001); } /** * @brief Test run() when the time step value is changed between function calls. * */ TEST_F(KalmanFilterTest, runChange) { VectorXf control(1); VectorXf measurement(1); control << 1; measurement << 1; VectorXf res(1); res = kf->run(control, measurement, 0.1); EXPECT_NEAR(0.09545, res(0), 0.00001); EXPECT_NEAR(0.1, res(1), 0.1); res = kf->run(control, measurement, 0.15); EXPECT_NEAR(0.2761, res(0), 0.0001); EXPECT_NEAR(0.3585, res(1), 0.0001); }