#include "../include/sensorIMU.hpp" IMUSensor::IMUSensor(std::string I2C_FILE) { this -> I2C_FILE = I2C_FILE; } bool IMUSensor::init(void* data) { //I2C_File passed on object creation, stored in sensorI2C parent setupI2C(I2C_FILE); //In the adafruit code there's a big step of waiting for timeout and connection stuff for up to a full second //I don't do that here because the BBB takes like 17 years to boot so we'll just hope it goes faster than that //Sanity check for factory device ID uint8_t id = readSingleRegister(BNO055_CHIP_ID_ADDR); if (id != BNO055_ID) { fprintf(stderr, "DEVICE ID DID NOT PASS SANITY CHECK FOR BNO IMU!"); return false; } //Set default operating mode of IMU into config from startup (will be set properly after config phase) setModeHard(OPERATION_MODE_CONFIG); //Writes 1 to the system reset bit in the trigger register writeRegister(BNO055_SYS_TRIGGER_ADDR, 0x20); //Wait for reset to complete by doing sanity check again while (readSingleRegister(BNO055_CHIP_ID_ADDR) != BNO055_ID); //Set power mode for sensor writeRegister(BNO055_PWR_MODE_ADDR, POWER_MODE_NORMAL); //Sensor chip uses two "pages" to multiplex register values //Page 0 contains the sensor data (not configuration), which is what we want writeRegister(BNO055_PAGE_ID_ADDR, 0); //Genuinely no idea why Adafruit does this, ensuring all triggers are off before mode config I guess writeRegister(BNO055_SYS_TRIGGER_ADDR, 0x0); setModeTemp(default_mode); return true; } //Sets mode so it can be undone for temporary changes, like operation setting void IMUSensor::setModeTemp(adafruit_bno055_opmode_t mode) { currentMode = mode; writeRegister(BNO055_OPR_MODE_ADDR, currentMode); } //Sets mode *AND* internal state variable void IMUSensor::setModeTemp(adafruit_bno055_opmode_t mode) { writeRegister(BNO055_OPR_MODE_ADDR, currentMode); } adafruit_bno055_opmode_t IMUSensor::getMode() { return (adafruit_bno055_opmode_t)readSingleRegister(BNO055_OPR_MODE_ADDR); } imu::Vector<3> IMUSensor::getVector(adafruit_vector_type_t vector_type) { imu::Vector<3> xyz; uint8_t buffer[6] = readMultipleRegisters((adafruit_bno055_reg_t)vector_type, 6); int16_t x, y, z; x = y = z = 0; /* Read vector data (6 bytes) */ x = ((int16_t)buffer[0]) | (((int16_t)buffer[1]) << 8); y = ((int16_t)buffer[2]) | (((int16_t)buffer[3]) << 8); z = ((int16_t)buffer[4]) | (((int16_t)buffer[5]) << 8); /*! * Convert the value to an appropriate range (section 3.6.4) * and assign the value to the Vector type */ switch (vector_type) { case VECTOR_MAGNETOMETER: /* 1uT = 16 LSB */ xyz[0] = ((double)x) / 16.0; xyz[1] = ((double)y) / 16.0; xyz[2] = ((double)z) / 16.0; break; case VECTOR_GYROSCOPE: /* 1dps = 16 LSB */ xyz[0] = ((double)x) / 16.0; xyz[1] = ((double)y) / 16.0; xyz[2] = ((double)z) / 16.0; break; case VECTOR_EULER: /* 1 degree = 16 LSB */ xyz[0] = ((double)x) / 16.0; xyz[1] = ((double)y) / 16.0; xyz[2] = ((double)z) / 16.0; break; case VECTOR_ACCELEROMETER: /* 1m/s^2 = 100 LSB */ xyz[0] = ((double)x) / 100.0; xyz[1] = ((double)y) / 100.0; xyz[2] = ((double)z) / 100.0; break; case VECTOR_LINEARACCEL: /* 1m/s^2 = 100 LSB */ xyz[0] = ((double)x) / 100.0; xyz[1] = ((double)y) / 100.0; xyz[2] = ((double)z) / 100.0; break; case VECTOR_GRAVITY: /* 1m/s^2 = 100 LSB */ xyz[0] = ((double)x) / 100.0; xyz[1] = ((double)y) / 100.0; xyz[2] = ((double)z) / 100.0; break; } return xyz; } imu::Quaternion IMUSensor::getQuat() { uint8_t buffer[8] = readMultipleRegisters(BNO055_QUATERNION_DATA_W_LSB_ADDR, 8); int16_t x, y, z, w; x = y = z = w = 0; //Bit shift data into the right places and store it w = (((uint16_t)buffer[1]) << 8) | ((uint16_t)buffer[0]); x = (((uint16_t)buffer[3]) << 8) | ((uint16_t)buffer[2]); y = (((uint16_t)buffer[5]) << 8) | ((uint16_t)buffer[4]); z = (((uint16_t)buffer[7]) << 8) | ((uint16_t)buffer[6]); /*! * Assign to Quaternion * See * https://cdn-shop.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf * 3.6.5.5 Orientation (Quaternion) */ const double scale = (1.0 / (1 << 14)); imu::Quaternion quat(scale * w, scale * x, scale * y, scale * z); return quat; } int8_t IMUSensor::getTemp() { int8_t temp = (int8_t)(readSingleRegister(BNO055_TEMP_ADDR)); return temp; } void IMUSensor::setAxisRemap(adafruit_bno055_axis_remap_config_t remapcode) { //Put into proper config for mapping stuff setModeTemp(OPERATION_MODE_CONFIG); writeRegister(BNO055_AXIS_MAP_CONFIG_ADDR, remapcode); //Return mode to operating mode setModeTemp(currentMode); } void IMUSensor::setAxisSign(adafruit_bno055_axis_remap_sign_t remapsign) { //See above method, pretty much the exact same setModeTemp(OPERATION_MODE_CONFIG); writeRegister(BNO055_AXIS_MAP_SIGN_ADDR, remapsign); setModeTemp(currentMode); } //This method is weird; it intakes several existing byte pointers to see what action it should take. Luckily, we shouldn't have to use it. void IMUSensor::getSystemStatus(uint8_t *system_status, uint8_t *self_test_result, uint8_t *system_error) { //Make sure IMU is on proper register page to get system status writeRegister(BNO055_PAGE_ID_ADDR, 0); //If system status requested, read the status. if (system_status != 0) *system_status = readSingleRegister(BNO055_SYS_STAT_ADDR); //If self test result requested, pull the self test results. if (self_test_result != 0) *self_test_result = readSingleRegister(BNO055_SELFTEST_RESULT_ADDR); //Finally, if there's an error pull and stash it. if (system_error != 0) *system_error = readSingleRegister(BNO055_SYS_ERR_ADDR); } //Same as above method, byte pointers are fed into it as parameters that get populated by method. void IMUSensor::getCalibration(uint8_t *sys, uint8_t *gyro, uint8_t *accel, uint8_t *mag) { uint8_t calData = readSingleRegister(BNO055_CALIB_STAT_ADDR); if (sys != NULL) { *sys = (calData >> 6) & 0x03; } if (gyro != NULL) { *gyro = (calData >> 4) & 0x03; } if (accel != NULL) { *accel = (calData >> 2) & 0x03; } if (mag != NULL) { *mag = calData & 0x03; } } /* Functions to deal with raw calibration data */ bool IMUSensor::getSensorOffsets(uint8_t *calibData) { if (isFullyCalibrated()) { setModeTemp(OPERATION_MODE_CONFIG); calibData = readMultipleRegisters(ACCEL_OFFSET_X_LSB_ADDR, NUM_BNO055_OFFSET_REGISTERS); setModeTemp(currentMode); return true; } return false; } //Fully populated offset getter using type of offset, not just calibration data bool IMUSensor::getSensorOffsets(adafruit_bno055_offsets_t &offsets_type) { if (isFullyCalibrated()) { setModeTemp(OPERATION_MODE_CONFIG); /* Accel offset range depends on the G-range: +/-2g = +/- 2000 mg +/-4g = +/- 4000 mg +/-8g = +/- 8000 mg +/-1§g = +/- 16000 mg */ offsets_type.accel_offset_x = (readSingleRegister(ACCEL_OFFSET_X_MSB_ADDR) << 8) | (readSingleRegister(ACCEL_OFFSET_X_LSB_ADDR)); offsets_type.accel_offset_y = (readSingleRegister(ACCEL_OFFSET_Y_MSB_ADDR) << 8) | (readSingleRegister(ACCEL_OFFSET_Y_LSB_ADDR)); offsets_type.accel_offset_z = (readSingleRegister(ACCEL_OFFSET_Z_MSB_ADDR) << 8) | (readSingleRegister(ACCEL_OFFSET_Z_LSB_ADDR)); /* Magnetometer offset range = +/- 6400 LSB where 1uT = 16 LSB */ offsets_type.mag_offset_x = (readSingleRegister(MAG_OFFSET_X_MSB_ADDR) << 8) | (readSingleRegister(MAG_OFFSET_X_LSB_ADDR)); offsets_type.mag_offset_y = (readSingleRegister(MAG_OFFSET_Y_MSB_ADDR) << 8) | (readSingleRegister(MAG_OFFSET_Y_LSB_ADDR)); offsets_type.mag_offset_z = (readSingleRegister(MAG_OFFSET_Z_MSB_ADDR) << 8) | (readSingleRegister(MAG_OFFSET_Z_LSB_ADDR)); /* Gyro offset range depends on the DPS range: 2000 dps = +/- 32000 LSB 1000 dps = +/- 16000 LSB 500 dps = +/- 8000 LSB 250 dps = +/- 4000 LSB 125 dps = +/- 2000 LSB ... where 1 DPS = 16 LSB */ offsets_type.gyro_offset_x = (readSingleRegister(GYRO_OFFSET_X_MSB_ADDR) << 8) | (readSingleRegister(GYRO_OFFSET_X_LSB_ADDR)); offsets_type.gyro_offset_y = (readSingleRegister(GYRO_OFFSET_Y_MSB_ADDR) << 8) | (readSingleRegister(GYRO_OFFSET_Y_LSB_ADDR)); offsets_type.gyro_offset_z = (readSingleRegister(GYRO_OFFSET_Z_MSB_ADDR) << 8) | (readSingleRegister(GYRO_OFFSET_Z_LSB_ADDR)); /* Accelerometer radius = +/- 1000 LSB */ offsets_type.accel_radius = (readSingleRegister(ACCEL_RADIUS_MSB_ADDR) << 8) | (readSingleRegister(ACCEL_RADIUS_LSB_ADDR)); /* Magnetometer radius = +/- 960 LSB */ offsets_type.mag_radius = (readSingleRegister(MAG_RADIUS_MSB_ADDR) << 8) | (readSingleRegister(MAG_RADIUS_LSB_ADDR)); setModeTemp(currentMode); return true; } return false; } void IMUSensor::setSensorOffsets(const uint8_t *calibData) { setModeTemp(OPERATION_MODE_CONFIG); /* Note: Configuration will take place only when user writes to the last byte of each config data pair (ex. ACCEL_OFFSET_Z_MSB_ADDR, etc.). Therefore the last byte must be written whenever the user wants to changes the configuration. */ /* A writeLen() would make this much cleaner */ writeRegister(ACCEL_OFFSET_X_LSB_ADDR, calibData[0]); writeRegister(ACCEL_OFFSET_X_MSB_ADDR, calibData[1]); writeRegister(ACCEL_OFFSET_Y_LSB_ADDR, calibData[2]); writeRegister(ACCEL_OFFSET_Y_MSB_ADDR, calibData[3]); writeRegister(ACCEL_OFFSET_Z_LSB_ADDR, calibData[4]); writeRegister(ACCEL_OFFSET_Z_MSB_ADDR, calibData[5]); writeRegister(MAG_OFFSET_X_LSB_ADDR, calibData[6]); writeRegister(MAG_OFFSET_X_MSB_ADDR, calibData[7]); writeRegister(MAG_OFFSET_Y_LSB_ADDR, calibData[8]); writeRegister(MAG_OFFSET_Y_MSB_ADDR, calibData[9]); writeRegister(MAG_OFFSET_Z_LSB_ADDR, calibData[10]); writeRegister(MAG_OFFSET_Z_MSB_ADDR, calibData[11]); writeRegister(GYRO_OFFSET_X_LSB_ADDR, calibData[12]); writeRegister(GYRO_OFFSET_X_MSB_ADDR, calibData[13]); writeRegister(GYRO_OFFSET_Y_LSB_ADDR, calibData[14]); writeRegister(GYRO_OFFSET_Y_MSB_ADDR, calibData[15]); writeRegister(GYRO_OFFSET_Z_LSB_ADDR, calibData[16]); writeRegister(GYRO_OFFSET_Z_MSB_ADDR, calibData[17]); writeRegister(ACCEL_RADIUS_LSB_ADDR, calibData[18]); writeRegister(ACCEL_RADIUS_MSB_ADDR, calibData[19]); writeRegister(MAG_RADIUS_LSB_ADDR, calibData[20]); writeRegister(MAG_RADIUS_MSB_ADDR, calibData[21]); setModeTemp(currentMode); } void IMUSensor::setSensorOffsets(const adafruit_bno055_offsets_t &offsets_type) { setModeTemp(OPERATION_MODE_CONFIG); /* Note: Configuration will take place only when user writes to the last byte of each config data pair (ex. ACCEL_OFFSET_Z_MSB_ADDR, etc.). Therefore the last byte must be written whenever the user wants to changes the configuration. */ writeRegister(ACCEL_OFFSET_X_LSB_ADDR, (offsets_type.accel_offset_x) & 0x0FF); writeRegister(ACCEL_OFFSET_X_MSB_ADDR, (offsets_type.accel_offset_x >> 8) & 0x0FF); writeRegister(ACCEL_OFFSET_Y_LSB_ADDR, (offsets_type.accel_offset_y) & 0x0FF); writeRegister(ACCEL_OFFSET_Y_MSB_ADDR, (offsets_type.accel_offset_y >> 8) & 0x0FF); writeRegister(ACCEL_OFFSET_Z_LSB_ADDR, (offsets_type.accel_offset_z) & 0x0FF); writeRegister(ACCEL_OFFSET_Z_MSB_ADDR, (offsets_type.accel_offset_z >> 8) & 0x0FF); writeRegister(MAG_OFFSET_X_LSB_ADDR, (offsets_type.mag_offset_x) & 0x0FF); writeRegister(MAG_OFFSET_X_MSB_ADDR, (offsets_type.mag_offset_x >> 8) & 0x0FF); writeRegister(MAG_OFFSET_Y_LSB_ADDR, (offsets_type.mag_offset_y) & 0x0FF); writeRegister(MAG_OFFSET_Y_MSB_ADDR, (offsets_type.mag_offset_y >> 8) & 0x0FF); writeRegister(MAG_OFFSET_Z_LSB_ADDR, (offsets_type.mag_offset_z) & 0x0FF); writeRegister(MAG_OFFSET_Z_MSB_ADDR, (offsets_type.mag_offset_z >> 8) & 0x0FF); writeRegister(GYRO_OFFSET_X_LSB_ADDR, (offsets_type.gyro_offset_x) & 0x0FF); writeRegister(GYRO_OFFSET_X_MSB_ADDR, (offsets_type.gyro_offset_x >> 8) & 0x0FF); writeRegister(GYRO_OFFSET_Y_LSB_ADDR, (offsets_type.gyro_offset_y) & 0x0FF); writeRegister(GYRO_OFFSET_Y_MSB_ADDR, (offsets_type.gyro_offset_y >> 8) & 0x0FF); writeRegister(GYRO_OFFSET_Z_LSB_ADDR, (offsets_type.gyro_offset_z) & 0x0FF); writeRegister(GYRO_OFFSET_Z_MSB_ADDR, (offsets_type.gyro_offset_z >> 8) & 0x0FF); writeRegister(ACCEL_RADIUS_LSB_ADDR, (offsets_type.accel_radius) & 0x0FF); writeRegister(ACCEL_RADIUS_MSB_ADDR, (offsets_type.accel_radius >> 8) & 0x0FF); writeRegister(MAG_RADIUS_LSB_ADDR, (offsets_type.mag_radius) & 0x0FF); writeRegister(MAG_RADIUS_MSB_ADDR, (offsets_type.mag_radius >> 8) & 0x0FF); setModeTemp(currentMode); } bool IMUSensor::isFullyCalibrated() { uint8_t system, gyro, accel, mag; getCalibration(&system, &gyro, &accel, &mag); switch (currentMode) { case OPERATION_MODE_ACCONLY: return (accel == 3); case OPERATION_MODE_MAGONLY: return (mag == 3); case OPERATION_MODE_GYRONLY: case OPERATION_MODE_M4G: /* No magnetometer calibration required. */ return (gyro == 3); case OPERATION_MODE_ACCMAG: case OPERATION_MODE_COMPASS: return (accel == 3 && mag == 3); case OPERATION_MODE_ACCGYRO: case OPERATION_MODE_IMUPLUS: return (accel == 3 && gyro == 3); case OPERATION_MODE_MAGGYRO: return (mag == 3 && gyro == 3); default: return (system == 3 && gyro == 3 && accel == 3 && mag == 3); } } /* Power managments functions */ void IMUSensor::enterSuspendMode() { /* Switch to config mode (just in case since this is the default) */ setModeTemp(OPERATION_MODE_CONFIG); writeRegister(BNO055_PWR_MODE_ADDR, 0x02); /* Set the requested operating mode (see section 3.3) */ setModeTemp(currentMode); } void IMUSensor::enterNormalMode() { /* Switch to config mode (just in case since this is the default) */ setModeTemp(OPERATION_MODE_CONFIG); writeRegister(BNO055_PWR_MODE_ADDR, 0x00); /* Set the requested operating mode (see section 3.3) */ setModeTemp(modeback); }