#include "sensorAltimeter.hpp" AltimeterSensor::AltimeterSensor(std::string I2C_FILE_in) { I2C_FILE = I2C_FILE_in; deviceAddress = 0x60; } //Startup routine copied from Adafruit library, as is most of the data getting methods //Adaptation is largely editing for readability and porting from Adafruit_I2C to BBB I2C (sensorI2C.hpp implementation) bool AltimeterSensor::init() { // Vehicle *vehicle = (Vehicle *) data; // // Do Stuff // data = (void*) vehicle; //Pass file string from parent to setup function, actual I2C bus gets stored internally. setupI2C(I2C_FILE); // Check a register with a hard-coded value to see if comms are working uint8_t whoami = readSingleRegister(MPL3115A2_WHOAMI); if (whoami != 0xC4) { fprintf(stderr, "MPL INITIALIZATION DID NOT PASS WHOAMI DEVICE CHECK!, got: %X, expected: 0xC4\n", whoami); return false; } //Send device dedicated reset byte to CTRL1 Register writeRegister(MPL3115A2_CTRL_REG1, MPL3115A2_CTRL_REG1_RST); //Wait for reset to wipe its way through device and reset appropriate bit of CTRL1 Register while (readSingleRegister(MPL3115A2_CTRL_REG1) & MPL3115A2_CTRL_REG1_RST); //Set oversampling (?) and altitude mode by default currentMode = MPL3115A2_ALTIMETER; ctrl_reg1.reg = MPL3115A2_CTRL_REG1_OS128 | MPL3115A2_CTRL_REG1_ALT; writeRegister(MPL3115A2_CTRL_REG1, ctrl_reg1.reg); //Configure data return types, I don't really understand this chunk but Adafruit does it this way so we will too I guess writeRegister(MPL3115A2_PT_DATA_CFG, MPL3115A2_PT_DATA_CFG_TDEFE | MPL3115A2_PT_DATA_CFG_PDEFE | MPL3115A2_PT_DATA_CFG_DREM); return true; } //EXPECTED THAT USER WILL NEVER SET MODE TO PRESSURE AFTER INITIAL CONFIGURATION void AltimeterSensor::setMode(mpl3115a2_mode_t mode) { ctrl_reg1.reg = readSingleRegister(MPL3115A2_CTRL_REG1); ctrl_reg1.bit.ALT = mode; writeRegister(MPL3115A2_CTRL_REG1, ctrl_reg1.reg); currentMode = mode; } double AltimeterSensor::getAltitude() { //Request new data reading requestOneShotReading(); //If new data is available, read it and store it to internal fields if (isNewDataAvailable()) { //Logger flag here for new data? updateCurrentDataBuffer(); } //Return internal field, whether updated or not return internalAltitude; } double AltimeterSensor::getTemperature() { //Request new data reading requestOneShotReading(); //If new data is available, read it and store it to internal fields if (isNewDataAvailable()) { //Logger flag here for new data? updateCurrentDataBuffer(); } //Return internal field, whether updated or not return internalTemperature; } void AltimeterSensor::requestOneShotReading() { //Request current status of oneshot reading ctrl_reg1.reg = readSingleRegister(MPL3115A2_CTRL_REG1); //If oneshot is complete, proc a new one; if it isn't, do nothing. //THIS PRODUCES DUPLICATE DATA IF READING REQUESTS FROM BB DON'T LINE UP WITH READING COMPLETION ON SENSOR. if (!ctrl_reg1.bit.OST) { // initiate one-shot measurement ctrl_reg1.bit.OST = 1; writeRegister(MPL3115A2_CTRL_REG1, ctrl_reg1.reg); } } bool AltimeterSensor::isNewDataAvailable() { //Returns PTDR bit of status register, 1 if new data for Temp OR Alt/Pres is available //There *are* registers available for exclusively temperature *or* pressure/altitude, but //for simplicity's sake we'll use the combined one for now. return ((readSingleRegister(MPL3115A2_REGISTER_STATUS) & MPL3115A2_REGISTER_STATUS_PTDR) != 0); } //Adafruit returns specific field based on input parameter, this method updates all internal fields at once instead void AltimeterSensor::updateCurrentDataBuffer() { uint8_t buffer[5] = {MPL3115A2_REGISTER_PRESSURE_MSB, 0, 0, 0, 0}; readMultipleRegisters(MPL3115A2_REGISTER_PRESSURE_MSB, 5); //Pressure is no longer used, assumed rocket is only logging altitude // uint32_t pressure; // pressure = uint32_t(buffer[0]) << 16 | uint32_t(buffer[1]) << 8 | // uint32_t(buffer[2]); // return double(pressure) / 6400.0; //Altitude Conversion int32_t alt; alt = uint32_t(buffer[0]) << 24 | uint32_t(buffer[1]) << 16 | uint32_t(buffer[2]) << 8; internalAltitude = double(alt) / 65536.0; int16_t t; t = uint16_t(buffer[3]) << 8 | uint16_t(buffer[4]); internalTemperature = double(t) / 256.0; }