#include "bno055.hpp" /// @link [Pico BNO055 Example](https://learnembeddedsystems.co.uk/bno005-i2c-example-code) BNO055::BNO055() { bno055_address = BNO055_ADDRESS_A; _sensorID = BNO055_ID; default_mode = OPERATION_MODE_NDOF; } void BNO055::reset_bno055() { uint8_t data[2]; data[0] = BNO055_SYS_TRIGGER_ADDR; data[1] = 0x20; // Reset system i2c_write_blocking(i2c_default, bno055_address, data, 2, true); sleep_ms(1000); // Wait 650ms for the sensor to reset } void BNO055::init() { sleep_ms(1000); // Wait 650ms for the sensor to reset uint8_t chip_id_addr = BNO055_CHIP_ID_ADDR; uint8_t id[1]; i2c_write_blocking(i2c_default, bno055_address, &chip_id_addr, 1, false); i2c_read_blocking(i2c_default, bno055_address, id, 1, false); if (!id[0] == _sensorID) { printf("BNO055 not detected\n"); } // Use internal oscillator uint8_t data[2]; data[0] = BNO055_SYS_TRIGGER_ADDR; data[1] = 0x40; // Set to use internal oscillator i2c_write_blocking(i2c_default, bno055_address, data, 2, true); // Reset all interrupt status bits data[0] = BNO055_SYS_TRIGGER_ADDR; data[1] = 0x01; // Reset interrupt status // 0x05 = Reset system i2c_write_blocking(i2c_default, bno055_address, data, 2, true); // Set to normal power mode data[0] = BNO055_PWR_MODE_ADDR; data[1] = 0x00; // Normal power mode i2c_write_blocking(i2c_default, bno055_address, data, 2, true); sleep_ms(50); // Wait 50ms for the sensor to switch to normal power mode // Page 25 of the datasheet // Default Axis Config data[0] = BNO055_AXIS_MAP_CONFIG_ADDR; data[1] = 0x24; // P1=Z, P2=Y, P3=X i2c_write_blocking(i2c_default, bno055_address, data, 2, true); // Default Axis Sign data[0] = BNO055_AXIS_MAP_SIGN_ADDR; data[1] = 0x00; // P1=Positive, P2=Positive, P3=Positive i2c_write_blocking(i2c_default, bno055_address, data, 2, true); // Set units to m/s^2 data[0] = BNO055_UNIT_SEL_ADDR; data[1] = 0x00; // Windows, Celsius, Degrees, DPS, m/s^2 i2c_write_blocking(i2c_default, bno055_address, data, 2, true); sleep_ms(30); //The default operation mode after power-on is CONFIGMODE // Set mode to NDOF // Takes 7ms to switch from CONFIG mode; see page 21 on datasheet (3.3) data[0] = BNO055_OPR_MODE_ADDR; data[1] = default_mode; // NDOF i2c_write_blocking(i2c_default, bno055_address, data, 2, false); sleep_ms(100); } void BNO055::read_calib_status() { uint8_t calib_stat_reg = BNO055_CALIB_STAT_ADDR; uint8_t calib_stat[1]; i2c_write_blocking(i2c_default, bno055_address, &calib_stat_reg, 1, true); i2c_read_blocking(i2c_default, bno055_address, calib_stat, 1, false); calib_status.mag = ((calib_stat[0] & 0b00000011) >> 0); calib_status.accel = ((calib_stat[0] & 0b00001100) >> 2); calib_status.gyro = ((calib_stat[0] & 0b00110000) >> 4); calib_status.sys = ((calib_stat[0] & 0b11000000) >> 6); } void BNO055::read_lin_accel() { uint8_t lin_accel_reg = BNO055_LINEAR_ACCEL_DATA_X_LSB_ADDR; i2c_write_blocking(i2c_default, bno055_address, &lin_accel_reg, 1, true); i2c_read_blocking(i2c_default, bno055_address, accel, 6, false); int16_t x, y, z; x = y = z = 0; x = ((int16_t)accel[0]) | (((int16_t)accel[1]) << 8); y = ((int16_t)accel[2]) | (((int16_t)accel[3]) << 8); z = ((int16_t)accel[4]) | (((int16_t)accel[5]) << 8); linear_acceleration.x = ((float)x) / 100.0; linear_acceleration.y = ((float)y) / 100.0; linear_acceleration.z = ((float)z) / 100.0; } void BNO055::clamp_close_zero(volatile float &val) { if (val < 0.01 && val > -0.01) { val = 0.0; } } void BNO055::accel_to_gravity() { accel_gravity.x = abs_lin_accel.x / 9.81; accel_gravity.y = abs_lin_accel.y / 9.81; accel_gravity.z = abs_lin_accel.z / 9.81; } void BNO055::read_abs_quaternion() { uint8_t quat_reg = BNO055_QUATERNION_DATA_W_LSB_ADDR; i2c_write_blocking(i2c_default, bno055_address, &quat_reg, 1, true); i2c_read_blocking(i2c_default, bno055_address, quat, 8, false); int16_t w, x, y, z; w = x = y = z = 0; w = ((int16_t)quat[0]) | (((int16_t)quat[1]) << 8); x = ((int16_t)quat[2]) | (((int16_t)quat[3]) << 8); y = ((int16_t)quat[4]) | (((int16_t)quat[5]) << 8); z = ((int16_t)quat[6]) | (((int16_t)quat[7]) << 8); abs_quaternion.w = ((float)w) / 16384.0; // 2^14 LSB abs_quaternion.x = ((float)x) / 16384.0; abs_quaternion.y = ((float)y) / 16384.0; abs_quaternion.z = ((float)z) / 16384.0; } void BNO055::read_euler_angles() { uint8_t euler[6]; uint8_t euler_reg = BNO055_EULER_H_LSB_ADDR; i2c_write_blocking(i2c_default, bno055_address, &euler_reg, 1, true); i2c_read_blocking(i2c_default, bno055_address, euler, 6, false); /// @note heading = yaw int16_t heading, roll, pitch; heading = roll = pitch = 0; heading = ((int16_t)euler[0]) | (((int16_t)euler[1]) << 8); roll = ((int16_t)euler[2]) | (((int16_t)euler[3]) << 8); pitch = ((int16_t)euler[4]) | (((int16_t)euler[5]) << 8); euler_angles.x = ((float)roll) / 16.0; euler_angles.y = ((float)pitch) / 16.0; euler_angles.z = ((float)heading) / 16.0; } void BNO055::read_accel() { uint8_t accel[6]; uint8_t accel_reg = BNO055_ACCEL_DATA_X_LSB_ADDR; i2c_write_blocking(i2c_default, bno055_address, &accel_reg, 1, true); i2c_read_blocking(i2c_default, bno055_address, accel, 6, false); int16_t x, y, z; x = y = z = 0; x = ((int16_t)accel[0]) | (((int16_t)accel[1]) << 8); y = ((int16_t)accel[2]) | (((int16_t)accel[3]) << 8); z = ((int16_t)accel[4]) | (((int16_t)accel[5]) << 8); acceleration.x = ((float)x) / 100.0; acceleration.y = ((float)y) / 100.0; acceleration.z = ((float)z) / 100.0; } void BNO055::quaternion_to_euler() { Eigen::Quaternion q; q.w() = abs_quaternion.w; q.x() = abs_quaternion.x; q.y() = abs_quaternion.y; q.z() = abs_quaternion.z; q.normalize(); Eigen::Matrix3f m = q.toRotationMatrix(); euler_angles.x = atan2f(m(2,1), m(2,2)); euler_angles.y = asinf(-m(2,0)); euler_angles.z = atan2f(m(1,0), m(0,0)); } void BNO055::calculate_abs_linear_acceleration() { Eigen::Quaternion q; q.w() = abs_quaternion.w; q.x() = abs_quaternion.x; q.y() = abs_quaternion.y; q.z() = abs_quaternion.z; // q.normalize(); Eigen::Matrix3f rotation_matrix = q.toRotationMatrix(); Eigen::Vector3f lin_accel; lin_accel.x() = linear_acceleration.x; lin_accel.y() = linear_acceleration.y; lin_accel.z() = linear_acceleration.z; abs_lin_accel.x = lin_accel.x() * rotation_matrix(0, 0) + lin_accel.y() * rotation_matrix(0, 1) + lin_accel.z() * rotation_matrix(0, 2); abs_lin_accel.y = lin_accel.x() * rotation_matrix(1, 0) + lin_accel.y() * rotation_matrix(1, 1) + lin_accel.z() * rotation_matrix(1, 2); abs_lin_accel.z = -1.0f * (lin_accel.x() * rotation_matrix(2, 0) + lin_accel.y() * rotation_matrix(2, 1) + lin_accel.z() * rotation_matrix(2, 2)); } void BNO055::get_rotation_vector() { Eigen::Quaternion q; q.w() = abs_quaternion.w; q.x() = abs_quaternion.x; q.y() = abs_quaternion.y; q.z() = abs_quaternion.z; q.normalize(); Eigen::Matrix3f rotation_matrix = q.toRotationMatrix(); rot_y_vec.x = rotation_matrix(1, 0); rot_y_vec.y = rotation_matrix(1, 1); rot_y_vec.z = rotation_matrix(1, 2); }