summaryrefslogtreecommitdiff
path: root/tools/imu_calib.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'tools/imu_calib.cpp')
-rw-r--r--tools/imu_calib.cpp222
1 files changed, 222 insertions, 0 deletions
diff --git a/tools/imu_calib.cpp b/tools/imu_calib.cpp
new file mode 100644
index 0000000..dc45f39
--- /dev/null
+++ b/tools/imu_calib.cpp
@@ -0,0 +1,222 @@
+#include <stdio.h>
+#include <stdint.h>
+#include <inttypes.h>
+#include <Eigen/Geometry>
+
+#include "pico/stdio.h"
+#include "hardware/gpio.h"
+#include "hardware/i2c.h"
+
+#define MAX_SCL 400000
+
+#define BNO055_OPR_MODE_ADDR 0x3D
+#define BNO055_OPR_MODE_CONFIG 0x00
+#define BNO055_SYS_TRIGGER_ADDR 0x3F
+#define BNO055_ADDRESS 0x28
+#define BNO055_CHIP_ID_ADDR 0x00
+#define BNO055_CHIP_ID 0xA0
+#define BNO055_OPR_MODE_NDOF 0x0C
+#define BNO055_CALIB_STAT_ADDR 0x35
+#define ACCEL_OFFSET_X_LSB_ADDR 0x55
+#define BNO055_LINEAR_ACCEL_DATA_X_LSB_ADDR 0x28
+#define BNO055_QUATERNION_DATA_W_LSB_ADDR 0x20
+#define UNIT_SELECTION 0x3B
+
+void get_calibration(uint8_t *sys, uint8_t *gyro, uint8_t *accel, uint8_t *mag);
+
+int main() {
+ stdio_init_all();
+
+ getchar();
+
+ i2c_init(i2c_default, MAX_SCL);
+ gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
+ gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
+ gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
+ gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
+
+ uint8_t buf[2] = {BNO055_CHIP_ID_ADDR};
+
+ uint8_t id = 0x00;
+ sleep_ms(1000);
+ i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 1, false);
+ i2c_read_blocking(i2c_default, BNO055_ADDRESS, &id, 1, false);
+ while (id != BNO055_CHIP_ID) {
+ i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 1, false);
+ i2c_read_blocking(i2c_default, BNO055_ADDRESS, &id, 1, false);
+ printf("Id not correct!, seeing: %" PRIu8 "\n", id);
+ sleep_ms(10);
+ }
+
+ buf[0] = BNO055_OPR_MODE_ADDR;
+ buf[1] = BNO055_OPR_MODE_CONFIG;
+ i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false);
+
+ buf[0] = BNO055_SYS_TRIGGER_ADDR;
+ buf[1] = 0x20; // RESET
+ i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false);
+ sleep_ms(30);
+
+ buf[0] = BNO055_CHIP_ID_ADDR;
+ id = 0x00;
+ while (id != BNO055_CHIP_ID) {
+ i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 1, false);
+ i2c_read_blocking(i2c_default, BNO055_ADDRESS, &id, 1, false);
+ printf("Id not correct!, seeing: %" PRIu8 "\n", id);
+ sleep_ms(10);
+ }
+
+ buf[0] = BNO055_SYS_TRIGGER_ADDR;
+ buf[1] = 0x00; // RESET
+ i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false);
+ sleep_ms(30);
+
+ // Set units to m/s^2
+ buf[0] = UNIT_SELECTION;
+ buf[1] = 0x00; // Windows, Celsius, Degrees, DPS, m/s^2
+ i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false);
+ sleep_ms(50);
+
+ buf[0] = BNO055_OPR_MODE_ADDR;
+ buf[1] = BNO055_OPR_MODE_NDOF;
+ i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false);
+
+ uint8_t gyro = 0x00, accel = 0x00, mag = 0x00;
+
+ printf("Magnetometer: Perform the figure-eight calibration dance.\n");
+ while (mag != 3) {
+ // Calibration Dance Step One: Magnetometer
+ // Move sensor away from magnetic interference or shields
+ // Perform the figure-eight until calibrated
+ get_calibration(NULL, NULL, NULL, &mag);
+ printf("Mag Calib Status: %3.0f\n", (100 / 3 * mag));
+ sleep_ms(1000);
+ }
+ printf("... CALIBRATED\n");
+ sleep_ms(1000);
+
+ printf("Accelerometer: Perform the six-step calibration dance.\n");
+ while (accel != 3) {
+ // Calibration Dance Step Two: Accelerometer
+ // Place sensor board into six stable positions for a few seconds each:
+ // 1) x-axis right, y-axis up, z-axis away
+ // 2) x-axis up, y-axis left, z-axis away
+ // 3) x-axis left, y-axis down, z-axis away
+ // 4) x-axis down, y-axis right, z-axis away
+ // 5) x-axis left, y-axis right, z-axis up
+ // 6) x-axis right, y-axis left, z-axis down
+ // Repeat the steps until calibrated
+ get_calibration(NULL, NULL, &accel, NULL);
+ printf("Accel Calib Status: %3.0f\n", (100 / 3 * accel));
+ sleep_ms(1000);
+ }
+ printf("... CALIBRATED\n");
+ sleep_ms(1000);
+
+ printf("Gyroscope: Perform the hold-in-place calibration dance.\n");
+ while (gyro != 3) {
+ // Calibration Dance Step Three: Gyroscope
+ // Place sensor in any stable position for a few seconds
+ // (Accelerometer calibration may also calibrate the gyro)
+ get_calibration(NULL, &gyro, NULL, NULL);
+ printf("Gyro Calib Status: %3.0f\n", (100 / 3 * gyro));
+ sleep_ms(1000);
+ }
+ printf("... CALIBRATED\n");
+ sleep_ms(1000);
+ printf("CALIBRATION COMPLETED\n");
+
+ // Get Sensor Offsets
+ buf[0] = BNO055_OPR_MODE_ADDR;
+ buf[1] = BNO055_OPR_MODE_CONFIG;
+ uint8_t sensor_offsets[22];
+ i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false);
+ sleep_ms(30);
+
+ buf[0] = ACCEL_OFFSET_X_LSB_ADDR;
+ i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 1, false);
+ i2c_read_blocking(i2c_default, BNO055_ADDRESS, sensor_offsets, 18, false);
+ for (uint8_t i = 0; i < 18; i++) {
+ printf("sensor_offsets[%" PRIu8 "] = 0x%" PRIx8 ";\r\n", i + 1, sensor_offsets[i]);
+ }
+ sleep_ms(5000);
+
+ buf[0] = BNO055_OPR_MODE_ADDR;
+ buf[1] = BNO055_OPR_MODE_NDOF;
+ i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 2, false);
+ sleep_ms(5000);
+
+ getchar();
+
+ uint8_t lin_accel[6];
+ uint8_t quat[8];
+ float accel_x, accel_y, accel_z;
+ float abs_lin_accel_x, abs_lin_accel_y, abs_lin_accel_z;
+ float abs_quaternion_w, abs_quaternion_x, abs_quaternion_y, abs_quaternion_z;
+ while (1) {
+ uint8_t lin_accel_reg = BNO055_LINEAR_ACCEL_DATA_X_LSB_ADDR;
+ i2c_write_blocking(i2c_default, BNO055_ADDRESS, &lin_accel_reg, 1, true);
+ i2c_read_blocking(i2c_default, BNO055_ADDRESS, lin_accel, 6, false);
+ int16_t x, y, z;
+ x = y = z = 0;
+ x = ((int16_t)lin_accel[0]) | (((int16_t)lin_accel[1]) << 8);
+ y = ((int16_t)lin_accel[2]) | (((int16_t)lin_accel[3]) << 8);
+ z = ((int16_t)lin_accel[4]) | (((int16_t)lin_accel[5]) << 8);
+ accel_x = ((float)x) / 100.0;
+ accel_y = ((float)y) / 100.0;
+ accel_z = ((float)z) / 100.0;
+
+ uint8_t quat_reg = BNO055_QUATERNION_DATA_W_LSB_ADDR;
+ i2c_write_blocking(i2c_default, BNO055_ADDRESS, &quat_reg, 1, true);
+ i2c_read_blocking(i2c_default, BNO055_ADDRESS, quat, 8, false);
+ int16_t w;
+ w = x = y = z = 0;
+ w = ((int16_t)quat[0]) | (((int16_t)quat[1]) << 8);
+ x = ((int16_t)quat[2]) | (((int16_t)quat[3]) << 8);
+ y = ((int16_t)quat[4]) | (((int16_t)quat[5]) << 8);
+ z = ((int16_t)quat[6]) | (((int16_t)quat[7]) << 8);
+ abs_quaternion_w = ((float)w) / 16384.0; // 2^14 LSB
+ abs_quaternion_x = ((float)x) / 16384.0;
+ abs_quaternion_y = ((float)y) / 16384.0;
+ abs_quaternion_z = ((float)z) / 16384.0;
+
+ Eigen::Quaternion<float> q;
+ q.w() = abs_quaternion_w;
+ q.x() = abs_quaternion_x;
+ q.y() = abs_quaternion_y;
+ q.z() = abs_quaternion_z;
+ // q.normalize();
+ Eigen::Matrix3f rotation_matrix = q.toRotationMatrix();
+ Eigen::Vector3f lin_accel;
+ abs_lin_accel_x = accel_x* rotation_matrix(0, 0) + accel_y * rotation_matrix(0, 1) + accel_z* rotation_matrix(0, 2);
+ abs_lin_accel_y = accel_x * rotation_matrix(1, 0) + accel_y * rotation_matrix(1, 1) + accel_z * rotation_matrix(1, 2);
+ abs_lin_accel_z = -1.0f * (accel_x * rotation_matrix(2, 0) + accel_y * rotation_matrix(2, 1) + accel_z * rotation_matrix(2, 2));
+
+ printf("Acceleration Vector: %4.2f, %4.2f, %4.2f\n", accel_x, accel_y, accel_z);
+ printf("Abs Acceleration Vector: %4.2f, %4.2f, %4.2f\n", abs_lin_accel_x, abs_lin_accel_y, abs_lin_accel_z);
+ printf("Quaternion: %4.2f, %4.2f, %4.2f, %4.2f\n\n\n", abs_quaternion_w, abs_quaternion_x, abs_quaternion_y, abs_quaternion_z);
+ sleep_ms(1000);
+ }
+
+ return 0;
+}
+
+void get_calibration(uint8_t *sys, uint8_t *gyro, uint8_t *accel, uint8_t *mag) {
+ uint8_t buf[1] = {BNO055_CALIB_STAT_ADDR};
+ uint8_t cal_data = 0x00;
+ i2c_write_blocking(i2c_default, BNO055_ADDRESS, buf, 1, false);
+ i2c_read_blocking(i2c_default, BNO055_ADDRESS, &cal_data, 1, false);
+ if (sys != NULL) {
+ *sys = (cal_data >> 6) & 0x03;
+ }
+ if (gyro != NULL) {
+ *gyro = (cal_data >> 4) & 0x03;
+ }
+ if (accel != NULL) {
+ *accel = (cal_data >> 2) & 0x03;
+ }
+ if (mag != NULL) {
+ *mag = cal_data & 0x03;
+ }
+}
+