summaryrefslogtreecommitdiff
path: root/src/kalmanfilter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/kalmanfilter.cpp')
-rw-r--r--src/kalmanfilter.cpp106
1 files changed, 106 insertions, 0 deletions
diff --git a/src/kalmanfilter.cpp b/src/kalmanfilter.cpp
new file mode 100644
index 0000000..735e8c8
--- /dev/null
+++ b/src/kalmanfilter.cpp
@@ -0,0 +1,106 @@
+#include "../include/kalmanfilter.hpp"
+
+// Private----------------------------------------------------------------------
+void KalmanFilter::matrixInit() {
+
+ state_vector.setZero(n);
+ state_covariance.setZero(n, n);
+ state_transition_M = MatrixXf::Zero(n, n);
+ control_input_M = MatrixXf::Zero(n, p);
+ I = MatrixXf::Identity(n, n);
+ measurement_M.setIdentity(m, n); // Setup Measurement Matrix
+ process_noise_covariance = MatrixXf::Zero(n, n);
+ measurement_covariance = MatrixXf::Zero(m, m);
+
+ // Setup State Transition Matrix
+ state_transition_M << 1.0, dt,
+ 0.0, 1.0;
+
+ // Setup Control Input Matrix
+ control_input_M << 0.5 * std::pow(dt, 2), // (Linear Displacement Eq.)
+ dt;
+
+ // Setup Process-Noise Covariance
+ process_noise_covariance(0,0) = 0.01;
+ process_noise_covariance(1,1) = 0.1;
+
+ // Setup Measurement Covariance
+ measurement_covariance << 0.1;
+}
+
+
+void KalmanFilter::updateMatrices() {
+
+ state_transition_M(0, 1) = dt;
+ control_input_M(0, 0) = 0.5 * std::pow(dt, 2);
+ control_input_M(1, 0) = dt;
+}
+
+
+void KalmanFilter::prediction(VectorXf control_vec) {
+
+ state_vector = (state_transition_M * state_vector) + (control_input_M * control_vec);
+ state_covariance = (state_transition_M * (state_covariance * state_transition_M.transpose())) + process_noise_covariance;
+}
+
+void KalmanFilter::update(VectorXf measurement) {
+
+ // Innovation
+ VectorXf y = measurement - (measurement_M * state_vector);
+
+ // Residual/Innovation Covariance
+ MatrixXf S = (measurement_M * (state_covariance * measurement_M.transpose())) + measurement_covariance;
+
+ // Kalman Gain
+ MatrixXf K = (state_covariance * measurement_M.transpose()) * S.inverse();
+
+ // Update
+ state_vector = state_vector + (K * y);
+ state_covariance = (I - (K * measurement_M)) * state_covariance;
+}
+
+
+
+// Public----------------------------------------------------------------------
+KalmanFilter::KalmanFilter() {
+
+}
+
+
+KalmanFilter::KalmanFilter(int state_dim, int control_dim, int measurement_dim, double dt)
+ : n(state_dim), p(control_dim), m(measurement_dim), dt(dt) {
+
+ matrixInit();
+}
+
+bool KalmanFilter::setInitialState(VectorXf state_vec, MatrixXf state_cov) {
+
+ if (state_vec.size() != n || state_cov.rows() != n) {
+ std::cout << "Error: Max State & Covariance Dimension should be " << n << std::endl;
+ return false;
+ }
+
+ state_vector = state_vec;
+ state_covariance = state_cov;
+ return true;
+}
+
+
+
+
+VectorXf KalmanFilter::run(VectorXf control, VectorXf measurement, double _dt) {
+
+ if (control.size() != p || measurement.size() != m) {
+ std::cout << "Error: Control Vector Size should be "<< p
+ << " Measurement Vector Size should be " << m << std::endl;
+ return state_vector;
+ }
+
+ dt = _dt;
+ updateMatrices();
+
+ prediction(control);
+ update(measurement);
+
+ return state_vector;
+} \ No newline at end of file